include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,48,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,48,2}*768a
if this polytope has a name.
Group : SmallGroup(768,323306)
Rank : 4
Schlafli Type : {4,48,2}
Number of vertices, edges, etc : 4, 96, 48, 2
Order of s0s1s2s3 : 48
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {4,24,2}*384a, {2,48,2}*384
3-fold quotients : {4,16,2}*256a
4-fold quotients : {4,12,2}*192a, {2,24,2}*192
6-fold quotients : {4,8,2}*128a, {2,16,2}*128
8-fold quotients : {2,12,2}*96, {4,6,2}*96a
12-fold quotients : {4,4,2}*64, {2,8,2}*64
16-fold quotients : {2,6,2}*48
24-fold quotients : {2,4,2}*32, {4,2,2}*32
32-fold quotients : {2,3,2}*24
48-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1, 49)( 2, 50)( 3, 51)( 4, 52)( 5, 53)( 6, 54)( 7, 55)( 8, 56)
( 9, 57)( 10, 58)( 11, 59)( 12, 60)( 13, 61)( 14, 62)( 15, 63)( 16, 64)
( 17, 65)( 18, 66)( 19, 67)( 20, 68)( 21, 69)( 22, 70)( 23, 71)( 24, 72)
( 25, 73)( 26, 74)( 27, 75)( 28, 76)( 29, 77)( 30, 78)( 31, 79)( 32, 80)
( 33, 81)( 34, 82)( 35, 83)( 36, 84)( 37, 85)( 38, 86)( 39, 87)( 40, 88)
( 41, 89)( 42, 90)( 43, 91)( 44, 92)( 45, 93)( 46, 94)( 47, 95)( 48, 96)
( 97,145)( 98,146)( 99,147)(100,148)(101,149)(102,150)(103,151)(104,152)
(105,153)(106,154)(107,155)(108,156)(109,157)(110,158)(111,159)(112,160)
(113,161)(114,162)(115,163)(116,164)(117,165)(118,166)(119,167)(120,168)
(121,169)(122,170)(123,171)(124,172)(125,173)(126,174)(127,175)(128,176)
(129,177)(130,178)(131,179)(132,180)(133,181)(134,182)(135,183)(136,184)
(137,185)(138,186)(139,187)(140,188)(141,189)(142,190)(143,191)(144,192);;
s1 := ( 2, 3)( 5, 6)( 7, 10)( 8, 12)( 9, 11)( 14, 15)( 17, 18)( 19, 22)
( 20, 24)( 21, 23)( 25, 31)( 26, 33)( 27, 32)( 28, 34)( 29, 36)( 30, 35)
( 37, 43)( 38, 45)( 39, 44)( 40, 46)( 41, 48)( 42, 47)( 49, 61)( 50, 63)
( 51, 62)( 52, 64)( 53, 66)( 54, 65)( 55, 70)( 56, 72)( 57, 71)( 58, 67)
( 59, 69)( 60, 68)( 73, 91)( 74, 93)( 75, 92)( 76, 94)( 77, 96)( 78, 95)
( 79, 85)( 80, 87)( 81, 86)( 82, 88)( 83, 90)( 84, 89)( 97,121)( 98,123)
( 99,122)(100,124)(101,126)(102,125)(103,130)(104,132)(105,131)(106,127)
(107,129)(108,128)(109,133)(110,135)(111,134)(112,136)(113,138)(114,137)
(115,142)(116,144)(117,143)(118,139)(119,141)(120,140)(145,181)(146,183)
(147,182)(148,184)(149,186)(150,185)(151,190)(152,192)(153,191)(154,187)
(155,189)(156,188)(157,169)(158,171)(159,170)(160,172)(161,174)(162,173)
(163,178)(164,180)(165,179)(166,175)(167,177)(168,176);;
s2 := ( 1, 98)( 2, 97)( 3, 99)( 4,101)( 5,100)( 6,102)( 7,107)( 8,106)
( 9,108)( 10,104)( 11,103)( 12,105)( 13,110)( 14,109)( 15,111)( 16,113)
( 17,112)( 18,114)( 19,119)( 20,118)( 21,120)( 22,116)( 23,115)( 24,117)
( 25,128)( 26,127)( 27,129)( 28,131)( 29,130)( 30,132)( 31,122)( 32,121)
( 33,123)( 34,125)( 35,124)( 36,126)( 37,140)( 38,139)( 39,141)( 40,143)
( 41,142)( 42,144)( 43,134)( 44,133)( 45,135)( 46,137)( 47,136)( 48,138)
( 49,146)( 50,145)( 51,147)( 52,149)( 53,148)( 54,150)( 55,155)( 56,154)
( 57,156)( 58,152)( 59,151)( 60,153)( 61,158)( 62,157)( 63,159)( 64,161)
( 65,160)( 66,162)( 67,167)( 68,166)( 69,168)( 70,164)( 71,163)( 72,165)
( 73,176)( 74,175)( 75,177)( 76,179)( 77,178)( 78,180)( 79,170)( 80,169)
( 81,171)( 82,173)( 83,172)( 84,174)( 85,188)( 86,187)( 87,189)( 88,191)
( 89,190)( 90,192)( 91,182)( 92,181)( 93,183)( 94,185)( 95,184)( 96,186);;
s3 := (193,194);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1, s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(194)!( 1, 49)( 2, 50)( 3, 51)( 4, 52)( 5, 53)( 6, 54)( 7, 55)
( 8, 56)( 9, 57)( 10, 58)( 11, 59)( 12, 60)( 13, 61)( 14, 62)( 15, 63)
( 16, 64)( 17, 65)( 18, 66)( 19, 67)( 20, 68)( 21, 69)( 22, 70)( 23, 71)
( 24, 72)( 25, 73)( 26, 74)( 27, 75)( 28, 76)( 29, 77)( 30, 78)( 31, 79)
( 32, 80)( 33, 81)( 34, 82)( 35, 83)( 36, 84)( 37, 85)( 38, 86)( 39, 87)
( 40, 88)( 41, 89)( 42, 90)( 43, 91)( 44, 92)( 45, 93)( 46, 94)( 47, 95)
( 48, 96)( 97,145)( 98,146)( 99,147)(100,148)(101,149)(102,150)(103,151)
(104,152)(105,153)(106,154)(107,155)(108,156)(109,157)(110,158)(111,159)
(112,160)(113,161)(114,162)(115,163)(116,164)(117,165)(118,166)(119,167)
(120,168)(121,169)(122,170)(123,171)(124,172)(125,173)(126,174)(127,175)
(128,176)(129,177)(130,178)(131,179)(132,180)(133,181)(134,182)(135,183)
(136,184)(137,185)(138,186)(139,187)(140,188)(141,189)(142,190)(143,191)
(144,192);
s1 := Sym(194)!( 2, 3)( 5, 6)( 7, 10)( 8, 12)( 9, 11)( 14, 15)( 17, 18)
( 19, 22)( 20, 24)( 21, 23)( 25, 31)( 26, 33)( 27, 32)( 28, 34)( 29, 36)
( 30, 35)( 37, 43)( 38, 45)( 39, 44)( 40, 46)( 41, 48)( 42, 47)( 49, 61)
( 50, 63)( 51, 62)( 52, 64)( 53, 66)( 54, 65)( 55, 70)( 56, 72)( 57, 71)
( 58, 67)( 59, 69)( 60, 68)( 73, 91)( 74, 93)( 75, 92)( 76, 94)( 77, 96)
( 78, 95)( 79, 85)( 80, 87)( 81, 86)( 82, 88)( 83, 90)( 84, 89)( 97,121)
( 98,123)( 99,122)(100,124)(101,126)(102,125)(103,130)(104,132)(105,131)
(106,127)(107,129)(108,128)(109,133)(110,135)(111,134)(112,136)(113,138)
(114,137)(115,142)(116,144)(117,143)(118,139)(119,141)(120,140)(145,181)
(146,183)(147,182)(148,184)(149,186)(150,185)(151,190)(152,192)(153,191)
(154,187)(155,189)(156,188)(157,169)(158,171)(159,170)(160,172)(161,174)
(162,173)(163,178)(164,180)(165,179)(166,175)(167,177)(168,176);
s2 := Sym(194)!( 1, 98)( 2, 97)( 3, 99)( 4,101)( 5,100)( 6,102)( 7,107)
( 8,106)( 9,108)( 10,104)( 11,103)( 12,105)( 13,110)( 14,109)( 15,111)
( 16,113)( 17,112)( 18,114)( 19,119)( 20,118)( 21,120)( 22,116)( 23,115)
( 24,117)( 25,128)( 26,127)( 27,129)( 28,131)( 29,130)( 30,132)( 31,122)
( 32,121)( 33,123)( 34,125)( 35,124)( 36,126)( 37,140)( 38,139)( 39,141)
( 40,143)( 41,142)( 42,144)( 43,134)( 44,133)( 45,135)( 46,137)( 47,136)
( 48,138)( 49,146)( 50,145)( 51,147)( 52,149)( 53,148)( 54,150)( 55,155)
( 56,154)( 57,156)( 58,152)( 59,151)( 60,153)( 61,158)( 62,157)( 63,159)
( 64,161)( 65,160)( 66,162)( 67,167)( 68,166)( 69,168)( 70,164)( 71,163)
( 72,165)( 73,176)( 74,175)( 75,177)( 76,179)( 77,178)( 78,180)( 79,170)
( 80,169)( 81,171)( 82,173)( 83,172)( 84,174)( 85,188)( 86,187)( 87,189)
( 88,191)( 89,190)( 90,192)( 91,182)( 92,181)( 93,183)( 94,185)( 95,184)
( 96,186);
s3 := Sym(194)!(193,194);
poly := sub<Sym(194)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope