include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {8,48}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {8,48}*768d
Also Known As : {8,48|2}. if this polytope has another name.
Group : SmallGroup(768,82994)
Rank : 3
Schlafli Type : {8,48}
Number of vertices, edges, etc : 8, 192, 48
Order of s0s1s2 : 48
Order of s0s1s2s1 : 2
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {8,24}*384b, {4,48}*384a
3-fold quotients : {8,16}*256d
4-fold quotients : {4,24}*192a, {8,12}*192a, {2,48}*192
6-fold quotients : {8,8}*128b, {4,16}*128a
8-fold quotients : {4,12}*96a, {2,24}*96, {8,6}*96
12-fold quotients : {4,8}*64a, {8,4}*64a, {2,16}*64
16-fold quotients : {2,12}*48, {4,6}*48a
24-fold quotients : {4,4}*32, {2,8}*32, {8,2}*32
32-fold quotients : {2,6}*24
48-fold quotients : {2,4}*16, {4,2}*16
64-fold quotients : {2,3}*12
96-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1, 97)( 2, 98)( 3, 99)( 4,100)( 5,101)( 6,102)( 7,103)( 8,104)
( 9,105)( 10,106)( 11,107)( 12,108)( 13,109)( 14,110)( 15,111)( 16,112)
( 17,113)( 18,114)( 19,115)( 20,116)( 21,117)( 22,118)( 23,119)( 24,120)
( 25,127)( 26,128)( 27,129)( 28,130)( 29,131)( 30,132)( 31,121)( 32,122)
( 33,123)( 34,124)( 35,125)( 36,126)( 37,139)( 38,140)( 39,141)( 40,142)
( 41,143)( 42,144)( 43,133)( 44,134)( 45,135)( 46,136)( 47,137)( 48,138)
( 49,151)( 50,152)( 51,153)( 52,154)( 53,155)( 54,156)( 55,145)( 56,146)
( 57,147)( 58,148)( 59,149)( 60,150)( 61,163)( 62,164)( 63,165)( 64,166)
( 65,167)( 66,168)( 67,157)( 68,158)( 69,159)( 70,160)( 71,161)( 72,162)
( 73,169)( 74,170)( 75,171)( 76,172)( 77,173)( 78,174)( 79,175)( 80,176)
( 81,177)( 82,178)( 83,179)( 84,180)( 85,181)( 86,182)( 87,183)( 88,184)
( 89,185)( 90,186)( 91,187)( 92,188)( 93,189)( 94,190)( 95,191)( 96,192)
(193,289)(194,290)(195,291)(196,292)(197,293)(198,294)(199,295)(200,296)
(201,297)(202,298)(203,299)(204,300)(205,301)(206,302)(207,303)(208,304)
(209,305)(210,306)(211,307)(212,308)(213,309)(214,310)(215,311)(216,312)
(217,319)(218,320)(219,321)(220,322)(221,323)(222,324)(223,313)(224,314)
(225,315)(226,316)(227,317)(228,318)(229,331)(230,332)(231,333)(232,334)
(233,335)(234,336)(235,325)(236,326)(237,327)(238,328)(239,329)(240,330)
(241,343)(242,344)(243,345)(244,346)(245,347)(246,348)(247,337)(248,338)
(249,339)(250,340)(251,341)(252,342)(253,355)(254,356)(255,357)(256,358)
(257,359)(258,360)(259,349)(260,350)(261,351)(262,352)(263,353)(264,354)
(265,361)(266,362)(267,363)(268,364)(269,365)(270,366)(271,367)(272,368)
(273,369)(274,370)(275,371)(276,372)(277,373)(278,374)(279,375)(280,376)
(281,377)(282,378)(283,379)(284,380)(285,381)(286,382)(287,383)(288,384);;
s1 := ( 2, 3)( 5, 6)( 8, 9)( 11, 12)( 13, 16)( 14, 18)( 15, 17)( 19, 22)
( 20, 24)( 21, 23)( 25, 31)( 26, 33)( 27, 32)( 28, 34)( 29, 36)( 30, 35)
( 37, 46)( 38, 48)( 39, 47)( 40, 43)( 41, 45)( 42, 44)( 49, 61)( 50, 63)
( 51, 62)( 52, 64)( 53, 66)( 54, 65)( 55, 67)( 56, 69)( 57, 68)( 58, 70)
( 59, 72)( 60, 71)( 73, 91)( 74, 93)( 75, 92)( 76, 94)( 77, 96)( 78, 95)
( 79, 85)( 80, 87)( 81, 86)( 82, 88)( 83, 90)( 84, 89)( 97,121)( 98,123)
( 99,122)(100,124)(101,126)(102,125)(103,127)(104,129)(105,128)(106,130)
(107,132)(108,131)(109,136)(110,138)(111,137)(112,133)(113,135)(114,134)
(115,142)(116,144)(117,143)(118,139)(119,141)(120,140)(145,181)(146,183)
(147,182)(148,184)(149,186)(150,185)(151,187)(152,189)(153,188)(154,190)
(155,192)(156,191)(157,169)(158,171)(159,170)(160,172)(161,174)(162,173)
(163,175)(164,177)(165,176)(166,178)(167,180)(168,179)(193,241)(194,243)
(195,242)(196,244)(197,246)(198,245)(199,247)(200,249)(201,248)(202,250)
(203,252)(204,251)(205,256)(206,258)(207,257)(208,253)(209,255)(210,254)
(211,262)(212,264)(213,263)(214,259)(215,261)(216,260)(217,271)(218,273)
(219,272)(220,274)(221,276)(222,275)(223,265)(224,267)(225,266)(226,268)
(227,270)(228,269)(229,286)(230,288)(231,287)(232,283)(233,285)(234,284)
(235,280)(236,282)(237,281)(238,277)(239,279)(240,278)(289,367)(290,369)
(291,368)(292,370)(293,372)(294,371)(295,361)(296,363)(297,362)(298,364)
(299,366)(300,365)(301,382)(302,384)(303,383)(304,379)(305,381)(306,380)
(307,376)(308,378)(309,377)(310,373)(311,375)(312,374)(313,343)(314,345)
(315,344)(316,346)(317,348)(318,347)(319,337)(320,339)(321,338)(322,340)
(323,342)(324,341)(325,358)(326,360)(327,359)(328,355)(329,357)(330,356)
(331,352)(332,354)(333,353)(334,349)(335,351)(336,350);;
s2 := ( 1,291)( 2,290)( 3,289)( 4,294)( 5,293)( 6,292)( 7,297)( 8,296)
( 9,295)( 10,300)( 11,299)( 12,298)( 13,306)( 14,305)( 15,304)( 16,303)
( 17,302)( 18,301)( 19,312)( 20,311)( 21,310)( 22,309)( 23,308)( 24,307)
( 25,315)( 26,314)( 27,313)( 28,318)( 29,317)( 30,316)( 31,321)( 32,320)
( 33,319)( 34,324)( 35,323)( 36,322)( 37,330)( 38,329)( 39,328)( 40,327)
( 41,326)( 42,325)( 43,336)( 44,335)( 45,334)( 46,333)( 47,332)( 48,331)
( 49,357)( 50,356)( 51,355)( 52,360)( 53,359)( 54,358)( 55,351)( 56,350)
( 57,349)( 58,354)( 59,353)( 60,352)( 61,345)( 62,344)( 63,343)( 64,348)
( 65,347)( 66,346)( 67,339)( 68,338)( 69,337)( 70,342)( 71,341)( 72,340)
( 73,381)( 74,380)( 75,379)( 76,384)( 77,383)( 78,382)( 79,375)( 80,374)
( 81,373)( 82,378)( 83,377)( 84,376)( 85,369)( 86,368)( 87,367)( 88,372)
( 89,371)( 90,370)( 91,363)( 92,362)( 93,361)( 94,366)( 95,365)( 96,364)
( 97,195)( 98,194)( 99,193)(100,198)(101,197)(102,196)(103,201)(104,200)
(105,199)(106,204)(107,203)(108,202)(109,210)(110,209)(111,208)(112,207)
(113,206)(114,205)(115,216)(116,215)(117,214)(118,213)(119,212)(120,211)
(121,219)(122,218)(123,217)(124,222)(125,221)(126,220)(127,225)(128,224)
(129,223)(130,228)(131,227)(132,226)(133,234)(134,233)(135,232)(136,231)
(137,230)(138,229)(139,240)(140,239)(141,238)(142,237)(143,236)(144,235)
(145,261)(146,260)(147,259)(148,264)(149,263)(150,262)(151,255)(152,254)
(153,253)(154,258)(155,257)(156,256)(157,249)(158,248)(159,247)(160,252)
(161,251)(162,250)(163,243)(164,242)(165,241)(166,246)(167,245)(168,244)
(169,285)(170,284)(171,283)(172,288)(173,287)(174,286)(175,279)(176,278)
(177,277)(178,282)(179,281)(180,280)(181,273)(182,272)(183,271)(184,276)
(185,275)(186,274)(187,267)(188,266)(189,265)(190,270)(191,269)(192,268);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(384)!( 1, 97)( 2, 98)( 3, 99)( 4,100)( 5,101)( 6,102)( 7,103)
( 8,104)( 9,105)( 10,106)( 11,107)( 12,108)( 13,109)( 14,110)( 15,111)
( 16,112)( 17,113)( 18,114)( 19,115)( 20,116)( 21,117)( 22,118)( 23,119)
( 24,120)( 25,127)( 26,128)( 27,129)( 28,130)( 29,131)( 30,132)( 31,121)
( 32,122)( 33,123)( 34,124)( 35,125)( 36,126)( 37,139)( 38,140)( 39,141)
( 40,142)( 41,143)( 42,144)( 43,133)( 44,134)( 45,135)( 46,136)( 47,137)
( 48,138)( 49,151)( 50,152)( 51,153)( 52,154)( 53,155)( 54,156)( 55,145)
( 56,146)( 57,147)( 58,148)( 59,149)( 60,150)( 61,163)( 62,164)( 63,165)
( 64,166)( 65,167)( 66,168)( 67,157)( 68,158)( 69,159)( 70,160)( 71,161)
( 72,162)( 73,169)( 74,170)( 75,171)( 76,172)( 77,173)( 78,174)( 79,175)
( 80,176)( 81,177)( 82,178)( 83,179)( 84,180)( 85,181)( 86,182)( 87,183)
( 88,184)( 89,185)( 90,186)( 91,187)( 92,188)( 93,189)( 94,190)( 95,191)
( 96,192)(193,289)(194,290)(195,291)(196,292)(197,293)(198,294)(199,295)
(200,296)(201,297)(202,298)(203,299)(204,300)(205,301)(206,302)(207,303)
(208,304)(209,305)(210,306)(211,307)(212,308)(213,309)(214,310)(215,311)
(216,312)(217,319)(218,320)(219,321)(220,322)(221,323)(222,324)(223,313)
(224,314)(225,315)(226,316)(227,317)(228,318)(229,331)(230,332)(231,333)
(232,334)(233,335)(234,336)(235,325)(236,326)(237,327)(238,328)(239,329)
(240,330)(241,343)(242,344)(243,345)(244,346)(245,347)(246,348)(247,337)
(248,338)(249,339)(250,340)(251,341)(252,342)(253,355)(254,356)(255,357)
(256,358)(257,359)(258,360)(259,349)(260,350)(261,351)(262,352)(263,353)
(264,354)(265,361)(266,362)(267,363)(268,364)(269,365)(270,366)(271,367)
(272,368)(273,369)(274,370)(275,371)(276,372)(277,373)(278,374)(279,375)
(280,376)(281,377)(282,378)(283,379)(284,380)(285,381)(286,382)(287,383)
(288,384);
s1 := Sym(384)!( 2, 3)( 5, 6)( 8, 9)( 11, 12)( 13, 16)( 14, 18)( 15, 17)
( 19, 22)( 20, 24)( 21, 23)( 25, 31)( 26, 33)( 27, 32)( 28, 34)( 29, 36)
( 30, 35)( 37, 46)( 38, 48)( 39, 47)( 40, 43)( 41, 45)( 42, 44)( 49, 61)
( 50, 63)( 51, 62)( 52, 64)( 53, 66)( 54, 65)( 55, 67)( 56, 69)( 57, 68)
( 58, 70)( 59, 72)( 60, 71)( 73, 91)( 74, 93)( 75, 92)( 76, 94)( 77, 96)
( 78, 95)( 79, 85)( 80, 87)( 81, 86)( 82, 88)( 83, 90)( 84, 89)( 97,121)
( 98,123)( 99,122)(100,124)(101,126)(102,125)(103,127)(104,129)(105,128)
(106,130)(107,132)(108,131)(109,136)(110,138)(111,137)(112,133)(113,135)
(114,134)(115,142)(116,144)(117,143)(118,139)(119,141)(120,140)(145,181)
(146,183)(147,182)(148,184)(149,186)(150,185)(151,187)(152,189)(153,188)
(154,190)(155,192)(156,191)(157,169)(158,171)(159,170)(160,172)(161,174)
(162,173)(163,175)(164,177)(165,176)(166,178)(167,180)(168,179)(193,241)
(194,243)(195,242)(196,244)(197,246)(198,245)(199,247)(200,249)(201,248)
(202,250)(203,252)(204,251)(205,256)(206,258)(207,257)(208,253)(209,255)
(210,254)(211,262)(212,264)(213,263)(214,259)(215,261)(216,260)(217,271)
(218,273)(219,272)(220,274)(221,276)(222,275)(223,265)(224,267)(225,266)
(226,268)(227,270)(228,269)(229,286)(230,288)(231,287)(232,283)(233,285)
(234,284)(235,280)(236,282)(237,281)(238,277)(239,279)(240,278)(289,367)
(290,369)(291,368)(292,370)(293,372)(294,371)(295,361)(296,363)(297,362)
(298,364)(299,366)(300,365)(301,382)(302,384)(303,383)(304,379)(305,381)
(306,380)(307,376)(308,378)(309,377)(310,373)(311,375)(312,374)(313,343)
(314,345)(315,344)(316,346)(317,348)(318,347)(319,337)(320,339)(321,338)
(322,340)(323,342)(324,341)(325,358)(326,360)(327,359)(328,355)(329,357)
(330,356)(331,352)(332,354)(333,353)(334,349)(335,351)(336,350);
s2 := Sym(384)!( 1,291)( 2,290)( 3,289)( 4,294)( 5,293)( 6,292)( 7,297)
( 8,296)( 9,295)( 10,300)( 11,299)( 12,298)( 13,306)( 14,305)( 15,304)
( 16,303)( 17,302)( 18,301)( 19,312)( 20,311)( 21,310)( 22,309)( 23,308)
( 24,307)( 25,315)( 26,314)( 27,313)( 28,318)( 29,317)( 30,316)( 31,321)
( 32,320)( 33,319)( 34,324)( 35,323)( 36,322)( 37,330)( 38,329)( 39,328)
( 40,327)( 41,326)( 42,325)( 43,336)( 44,335)( 45,334)( 46,333)( 47,332)
( 48,331)( 49,357)( 50,356)( 51,355)( 52,360)( 53,359)( 54,358)( 55,351)
( 56,350)( 57,349)( 58,354)( 59,353)( 60,352)( 61,345)( 62,344)( 63,343)
( 64,348)( 65,347)( 66,346)( 67,339)( 68,338)( 69,337)( 70,342)( 71,341)
( 72,340)( 73,381)( 74,380)( 75,379)( 76,384)( 77,383)( 78,382)( 79,375)
( 80,374)( 81,373)( 82,378)( 83,377)( 84,376)( 85,369)( 86,368)( 87,367)
( 88,372)( 89,371)( 90,370)( 91,363)( 92,362)( 93,361)( 94,366)( 95,365)
( 96,364)( 97,195)( 98,194)( 99,193)(100,198)(101,197)(102,196)(103,201)
(104,200)(105,199)(106,204)(107,203)(108,202)(109,210)(110,209)(111,208)
(112,207)(113,206)(114,205)(115,216)(116,215)(117,214)(118,213)(119,212)
(120,211)(121,219)(122,218)(123,217)(124,222)(125,221)(126,220)(127,225)
(128,224)(129,223)(130,228)(131,227)(132,226)(133,234)(134,233)(135,232)
(136,231)(137,230)(138,229)(139,240)(140,239)(141,238)(142,237)(143,236)
(144,235)(145,261)(146,260)(147,259)(148,264)(149,263)(150,262)(151,255)
(152,254)(153,253)(154,258)(155,257)(156,256)(157,249)(158,248)(159,247)
(160,252)(161,251)(162,250)(163,243)(164,242)(165,241)(166,246)(167,245)
(168,244)(169,285)(170,284)(171,283)(172,288)(173,287)(174,286)(175,279)
(176,278)(177,277)(178,282)(179,281)(180,280)(181,273)(182,272)(183,271)
(184,276)(185,275)(186,274)(187,267)(188,266)(189,265)(190,270)(191,269)
(192,268);
poly := sub<Sym(384)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
References : None.
to this polytope