Polytope of Type {26,4,2,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {26,4,2,2}*832
if this polytope has a name.
Group : SmallGroup(832,1605)
Rank : 5
Schlafli Type : {26,4,2,2}
Number of vertices, edges, etc : 26, 52, 4, 2, 2
Order of s0s1s2s3s4 : 52
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {26,4,2,2,2} of size 1664
Vertex Figure Of :
   {2,26,4,2,2} of size 1664
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {26,2,2,2}*416
   4-fold quotients : {13,2,2,2}*208
   13-fold quotients : {2,4,2,2}*64
   26-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
   2-fold covers : {26,4,4,2}*1664, {52,4,2,2}*1664, {26,4,2,4}*1664, {26,8,2,2}*1664
Permutation Representation (GAP) :
s0 := ( 2,13)( 3,12)( 4,11)( 5,10)( 6, 9)( 7, 8)(15,26)(16,25)(17,24)(18,23)
(19,22)(20,21)(28,39)(29,38)(30,37)(31,36)(32,35)(33,34)(41,52)(42,51)(43,50)
(44,49)(45,48)(46,47);;
s1 := ( 1, 2)( 3,13)( 4,12)( 5,11)( 6,10)( 7, 9)(14,15)(16,26)(17,25)(18,24)
(19,23)(20,22)(27,41)(28,40)(29,52)(30,51)(31,50)(32,49)(33,48)(34,47)(35,46)
(36,45)(37,44)(38,43)(39,42);;
s2 := ( 1,27)( 2,28)( 3,29)( 4,30)( 5,31)( 6,32)( 7,33)( 8,34)( 9,35)(10,36)
(11,37)(12,38)(13,39)(14,40)(15,41)(16,42)(17,43)(18,44)(19,45)(20,46)(21,47)
(22,48)(23,49)(24,50)(25,51)(26,52);;
s3 := (53,54);;
s4 := (55,56);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s3*s4*s3*s4, s0*s1*s2*s1*s0*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(56)!( 2,13)( 3,12)( 4,11)( 5,10)( 6, 9)( 7, 8)(15,26)(16,25)(17,24)
(18,23)(19,22)(20,21)(28,39)(29,38)(30,37)(31,36)(32,35)(33,34)(41,52)(42,51)
(43,50)(44,49)(45,48)(46,47);
s1 := Sym(56)!( 1, 2)( 3,13)( 4,12)( 5,11)( 6,10)( 7, 9)(14,15)(16,26)(17,25)
(18,24)(19,23)(20,22)(27,41)(28,40)(29,52)(30,51)(31,50)(32,49)(33,48)(34,47)
(35,46)(36,45)(37,44)(38,43)(39,42);
s2 := Sym(56)!( 1,27)( 2,28)( 3,29)( 4,30)( 5,31)( 6,32)( 7,33)( 8,34)( 9,35)
(10,36)(11,37)(12,38)(13,39)(14,40)(15,41)(16,42)(17,43)(18,44)(19,45)(20,46)
(21,47)(22,48)(23,49)(24,50)(25,51)(26,52);
s3 := Sym(56)!(53,54);
s4 := Sym(56)!(55,56);
poly := sub<Sym(56)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope