include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {9,2,6,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {9,2,6,4}*864a
if this polytope has a name.
Group : SmallGroup(864,2462)
Rank : 5
Schlafli Type : {9,2,6,4}
Number of vertices, edges, etc : 9, 9, 6, 12, 4
Order of s0s1s2s3s4 : 36
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{9,2,6,4,2} of size 1728
Vertex Figure Of :
{2,9,2,6,4} of size 1728
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {9,2,6,2}*432
3-fold quotients : {9,2,2,4}*288, {3,2,6,4}*288a
4-fold quotients : {9,2,3,2}*216
6-fold quotients : {9,2,2,2}*144, {3,2,6,2}*144
9-fold quotients : {3,2,2,4}*96
12-fold quotients : {3,2,3,2}*72
18-fold quotients : {3,2,2,2}*48
Covers (Minimal Covers in Boldface) :
2-fold covers : {9,2,12,4}*1728a, {9,2,6,8}*1728, {18,2,6,4}*1728a
Permutation Representation (GAP) :
s0 := (2,3)(4,5)(6,7)(8,9);;
s1 := (1,2)(3,4)(5,6)(7,8);;
s2 := (12,13)(15,16)(18,19)(20,21);;
s3 := (10,12)(11,18)(14,15)(16,19)(17,20);;
s4 := (10,11)(12,15)(13,16)(14,17)(18,20)(19,21);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s2*s3*s4*s3*s2*s3*s4*s3, s3*s4*s3*s4*s3*s4*s3*s4,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(21)!(2,3)(4,5)(6,7)(8,9);
s1 := Sym(21)!(1,2)(3,4)(5,6)(7,8);
s2 := Sym(21)!(12,13)(15,16)(18,19)(20,21);
s3 := Sym(21)!(10,12)(11,18)(14,15)(16,19)(17,20);
s4 := Sym(21)!(10,11)(12,15)(13,16)(14,17)(18,20)(19,21);
poly := sub<Sym(21)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s2*s3*s4*s3*s2*s3*s4*s3,
s3*s4*s3*s4*s3*s4*s3*s4, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope