include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,6,36}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,6,36}*864c
if this polytope has a name.
Group : SmallGroup(864,3998)
Rank : 4
Schlafli Type : {2,6,36}
Number of vertices, edges, etc : 2, 6, 108, 36
Order of s0s1s2s3 : 18
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{2,6,36,2} of size 1728
Vertex Figure Of :
{2,2,6,36} of size 1728
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {2,6,12}*288d
9-fold quotients : {2,6,4}*96b
18-fold quotients : {2,3,4}*48
Covers (Minimal Covers in Boldface) :
2-fold covers : {2,6,36}*1728
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 5)( 8, 9)(12,13)(16,17)(20,21)(24,25)(28,29)(32,33)(36,37);;
s2 := ( 5, 6)( 7,11)( 8,12)( 9,14)(10,13)(15,31)(16,32)(17,34)(18,33)(19,27)
(20,28)(21,30)(22,29)(23,35)(24,36)(25,38)(26,37);;
s3 := ( 3,18)( 4,17)( 5,16)( 6,15)( 7,26)( 8,25)( 9,24)(10,23)(11,22)(12,21)
(13,20)(14,19)(27,34)(28,33)(29,32)(30,31)(35,38)(36,37);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s3*s1*s2*s3*s1*s2*s1*s2*s3*s1*s2*s3*s1*s2*s1*s2,
s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2,
s1*s2*s3*s2*s3*s2*s3*s1*s2*s3*s2*s3*s2*s3*s1*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(38)!(1,2);
s1 := Sym(38)!( 4, 5)( 8, 9)(12,13)(16,17)(20,21)(24,25)(28,29)(32,33)(36,37);
s2 := Sym(38)!( 5, 6)( 7,11)( 8,12)( 9,14)(10,13)(15,31)(16,32)(17,34)(18,33)
(19,27)(20,28)(21,30)(22,29)(23,35)(24,36)(25,38)(26,37);
s3 := Sym(38)!( 3,18)( 4,17)( 5,16)( 6,15)( 7,26)( 8,25)( 9,24)(10,23)(11,22)
(12,21)(13,20)(14,19)(27,34)(28,33)(29,32)(30,31)(35,38)(36,37);
poly := sub<Sym(38)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s3*s1*s2*s3*s1*s2*s1*s2*s3*s1*s2*s3*s1*s2*s1*s2,
s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2,
s1*s2*s3*s2*s3*s2*s3*s1*s2*s3*s2*s3*s2*s3*s1*s2*s3*s2*s3*s2*s3 >;
to this polytope