include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,3,2,9,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,3,2,9,4}*864
if this polytope has a name.
Group : SmallGroup(864,3999)
Rank : 6
Schlafli Type : {2,3,2,9,4}
Number of vertices, edges, etc : 2, 3, 3, 9, 18, 4
Order of s0s1s2s3s4s5 : 18
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{2,3,2,9,4,2} of size 1728
Vertex Figure Of :
{2,2,3,2,9,4} of size 1728
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {2,3,2,3,4}*288
Covers (Minimal Covers in Boldface) :
2-fold covers : {2,3,2,9,4}*1728, {2,3,2,18,4}*1728b, {2,3,2,18,4}*1728c, {2,6,2,9,4}*1728
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (4,5);;
s2 := (3,4);;
s3 := ( 6, 7)( 8,11)( 9,10)(12,20)(13,19)(14,21)(15,17)(16,18)(22,28)(23,29)
(24,26)(25,27)(30,36)(31,37)(32,34)(33,35)(38,41)(39,40);;
s4 := ( 6,10)( 7, 8)( 9,17)(11,13)(12,14)(15,26)(16,27)(18,20)(19,22)(21,23)
(24,34)(25,35)(28,30)(29,31)(32,36)(33,40)(37,38)(39,41);;
s5 := ( 6,20)( 7,12)( 8,14)(11,21)(15,25)(17,27)(22,31)(24,33)(26,35)(28,37)
(30,38)(36,41);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s5*s0*s5,
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5,
s1*s2*s1*s2*s1*s2, s4*s5*s4*s5*s4*s5*s4*s5,
s5*s4*s3*s5*s4*s5*s4*s3*s4, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(41)!(1,2);
s1 := Sym(41)!(4,5);
s2 := Sym(41)!(3,4);
s3 := Sym(41)!( 6, 7)( 8,11)( 9,10)(12,20)(13,19)(14,21)(15,17)(16,18)(22,28)
(23,29)(24,26)(25,27)(30,36)(31,37)(32,34)(33,35)(38,41)(39,40);
s4 := Sym(41)!( 6,10)( 7, 8)( 9,17)(11,13)(12,14)(15,26)(16,27)(18,20)(19,22)
(21,23)(24,34)(25,35)(28,30)(29,31)(32,36)(33,40)(37,38)(39,41);
s5 := Sym(41)!( 6,20)( 7,12)( 8,14)(11,21)(15,25)(17,27)(22,31)(24,33)(26,35)
(28,37)(30,38)(36,41);
poly := sub<Sym(41)|s0,s1,s2,s3,s4,s5>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5,
s3*s5*s3*s5, s1*s2*s1*s2*s1*s2, s4*s5*s4*s5*s4*s5*s4*s5,
s5*s4*s3*s5*s4*s5*s4*s3*s4, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >;
to this polytope