include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,6,6,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,6,6,2}*864
if this polytope has a name.
Group : SmallGroup(864,4000)
Rank : 5
Schlafli Type : {4,6,6,2}
Number of vertices, edges, etc : 4, 18, 27, 9, 2
Order of s0s1s2s3s4 : 6
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{4,6,6,2,2} of size 1728
Vertex Figure Of :
{2,4,6,6,2} of size 1728
Quotients (Maximal Quotients in Boldface) :
No Regular Quotients.
Covers (Minimal Covers in Boldface) :
2-fold covers : {4,6,6,2}*1728e, {4,6,6,2}*1728g
Permutation Representation (GAP) :
s0 := ( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,11)(10,12)(13,15)(14,16)(17,19)(18,20)
(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36);;
s1 := ( 2, 3)( 5, 9)( 6,11)( 7,10)( 8,12)(14,15)(17,21)(18,23)(19,22)(20,24)
(26,27)(29,33)(30,35)(31,34)(32,36);;
s2 := ( 2, 4)( 6, 8)(10,12)(13,29)(14,32)(15,31)(16,30)(17,33)(18,36)(19,35)
(20,34)(21,25)(22,28)(23,27)(24,26);;
s3 := ( 1,13)( 2,14)( 3,15)( 4,16)( 5,21)( 6,22)( 7,23)( 8,24)( 9,17)(10,18)
(11,19)(12,20)(29,33)(30,34)(31,35)(32,36);;
s4 := (37,38);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s0*s1*s0*s1*s0*s1*s0*s1, s0*s1*s2*s1*s0*s1*s2*s0*s1,
s1*s2*s3*s1*s2*s3*s1*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(38)!( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,11)(10,12)(13,15)(14,16)(17,19)
(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36);
s1 := Sym(38)!( 2, 3)( 5, 9)( 6,11)( 7,10)( 8,12)(14,15)(17,21)(18,23)(19,22)
(20,24)(26,27)(29,33)(30,35)(31,34)(32,36);
s2 := Sym(38)!( 2, 4)( 6, 8)(10,12)(13,29)(14,32)(15,31)(16,30)(17,33)(18,36)
(19,35)(20,34)(21,25)(22,28)(23,27)(24,26);
s3 := Sym(38)!( 1,13)( 2,14)( 3,15)( 4,16)( 5,21)( 6,22)( 7,23)( 8,24)( 9,17)
(10,18)(11,19)(12,20)(29,33)(30,34)(31,35)(32,36);
s4 := Sym(38)!(37,38);
poly := sub<Sym(38)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s3*s4*s3*s4, s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s0*s1, s1*s2*s3*s1*s2*s3*s1*s2*s3,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope