Polytope of Type {6,3,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,3,2}*864
if this polytope has a name.
Group : SmallGroup(864,4000)
Rank : 4
Schlafli Type : {6,3,2}
Number of vertices, edges, etc : 72, 108, 36, 2
Order of s0s1s2s3 : 12
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {6,3,2,2} of size 1728
Vertex Figure Of :
   {2,6,3,2} of size 1728
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {6,3,2}*288
   4-fold quotients : {6,3,2}*216
   9-fold quotients : {6,3,2}*96
   12-fold quotients : {6,3,2}*72
   18-fold quotients : {3,3,2}*48
   36-fold quotients : {2,3,2}*24
Covers (Minimal Covers in Boldface) :
   2-fold covers : {12,3,2}*1728, {6,6,2}*1728b
Permutation Representation (GAP) :
s0 := ( 2, 3)( 5, 9)( 6,11)( 7,10)( 8,12)(14,15)(17,21)(18,23)(19,22)(20,24)
(26,27)(29,33)(30,35)(31,34)(32,36);;
s1 := ( 3, 4)( 7, 8)(11,12)(13,33)(14,34)(15,36)(16,35)(17,25)(18,26)(19,28)
(20,27)(21,29)(22,30)(23,32)(24,31);;
s2 := ( 1,16)( 2,14)( 3,15)( 4,13)( 5,20)( 6,18)( 7,19)( 8,17)( 9,24)(10,22)
(11,23)(12,21)(25,28)(29,32)(33,36);;
s3 := (37,38);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s1*s2*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(38)!( 2, 3)( 5, 9)( 6,11)( 7,10)( 8,12)(14,15)(17,21)(18,23)(19,22)
(20,24)(26,27)(29,33)(30,35)(31,34)(32,36);
s1 := Sym(38)!( 3, 4)( 7, 8)(11,12)(13,33)(14,34)(15,36)(16,35)(17,25)(18,26)
(19,28)(20,27)(21,29)(22,30)(23,32)(24,31);
s2 := Sym(38)!( 1,16)( 2,14)( 3,15)( 4,13)( 5,20)( 6,18)( 7,19)( 8,17)( 9,24)
(10,22)(11,23)(12,21)(25,28)(29,32)(33,36);
s3 := Sym(38)!(37,38);
poly := sub<Sym(38)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s1*s2*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1 >; 
 

to this polytope