include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,3,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,3,2}*864
if this polytope has a name.
Group : SmallGroup(864,4000)
Rank : 4
Schlafli Type : {6,3,2}
Number of vertices, edges, etc : 72, 108, 36, 2
Order of s0s1s2s3 : 12
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{6,3,2,2} of size 1728
Vertex Figure Of :
{2,6,3,2} of size 1728
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {6,3,2}*288
4-fold quotients : {6,3,2}*216
9-fold quotients : {6,3,2}*96
12-fold quotients : {6,3,2}*72
18-fold quotients : {3,3,2}*48
36-fold quotients : {2,3,2}*24
Covers (Minimal Covers in Boldface) :
2-fold covers : {12,3,2}*1728, {6,6,2}*1728b
Permutation Representation (GAP) :
s0 := ( 2, 3)( 5, 9)( 6,11)( 7,10)( 8,12)(14,15)(17,21)(18,23)(19,22)(20,24)
(26,27)(29,33)(30,35)(31,34)(32,36);;
s1 := ( 3, 4)( 7, 8)(11,12)(13,33)(14,34)(15,36)(16,35)(17,25)(18,26)(19,28)
(20,27)(21,29)(22,30)(23,32)(24,31);;
s2 := ( 1,16)( 2,14)( 3,15)( 4,13)( 5,20)( 6,18)( 7,19)( 8,17)( 9,24)(10,22)
(11,23)(12,21)(25,28)(29,32)(33,36);;
s3 := (37,38);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s1*s2*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(38)!( 2, 3)( 5, 9)( 6,11)( 7,10)( 8,12)(14,15)(17,21)(18,23)(19,22)
(20,24)(26,27)(29,33)(30,35)(31,34)(32,36);
s1 := Sym(38)!( 3, 4)( 7, 8)(11,12)(13,33)(14,34)(15,36)(16,35)(17,25)(18,26)
(19,28)(20,27)(21,29)(22,30)(23,32)(24,31);
s2 := Sym(38)!( 1,16)( 2,14)( 3,15)( 4,13)( 5,20)( 6,18)( 7,19)( 8,17)( 9,24)
(10,22)(11,23)(12,21)(25,28)(29,32)(33,36);
s3 := Sym(38)!(37,38);
poly := sub<Sym(38)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s1*s2*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1 >;
to this polytope