include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,3,6,3,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,3,6,3,4}*864
if this polytope has a name.
Group : SmallGroup(864,4000)
Rank : 6
Schlafli Type : {2,3,6,3,4}
Number of vertices, edges, etc : 2, 3, 9, 9, 6, 4
Order of s0s1s2s3s4s5 : 6
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{2,3,6,3,4,2} of size 1728
Vertex Figure Of :
{2,2,3,6,3,4} of size 1728
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {2,3,2,3,4}*288
Covers (Minimal Covers in Boldface) :
2-fold covers : {2,3,6,3,4}*1728, {2,3,6,6,4}*1728b, {2,3,6,6,4}*1728c, {2,6,6,3,4}*1728a
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 7,11)( 8,12)( 9,13)(10,14)(15,27)(16,28)(17,29)(18,30)(19,35)(20,36)
(21,37)(22,38)(23,31)(24,32)(25,33)(26,34);;
s2 := ( 3,15)( 4,16)( 5,17)( 6,18)( 7,23)( 8,24)( 9,25)(10,26)(11,19)(12,20)
(13,21)(14,22)(31,35)(32,36)(33,37)(34,38);;
s3 := ( 5, 6)( 7,11)( 8,12)( 9,14)(10,13)(15,19)(16,20)(17,22)(18,21)(25,26)
(27,35)(28,36)(29,38)(30,37)(33,34);;
s4 := ( 4, 5)( 7,11)( 8,13)( 9,12)(10,14)(16,17)(19,23)(20,25)(21,24)(22,26)
(28,29)(31,35)(32,37)(33,36)(34,38);;
s5 := ( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)
(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)(37,38);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s0*s5*s0*s5, s1*s5*s1*s5,
s2*s5*s2*s5, s3*s5*s3*s5, s1*s2*s1*s2*s1*s2,
s3*s4*s3*s4*s3*s4, s4*s5*s4*s5*s4*s5*s4*s5,
s3*s5*s4*s3*s5*s4*s3*s5*s4, s3*s1*s2*s3*s2*s3*s1*s2*s3*s2,
s4*s2*s3*s2*s3*s4*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(38)!(1,2);
s1 := Sym(38)!( 7,11)( 8,12)( 9,13)(10,14)(15,27)(16,28)(17,29)(18,30)(19,35)
(20,36)(21,37)(22,38)(23,31)(24,32)(25,33)(26,34);
s2 := Sym(38)!( 3,15)( 4,16)( 5,17)( 6,18)( 7,23)( 8,24)( 9,25)(10,26)(11,19)
(12,20)(13,21)(14,22)(31,35)(32,36)(33,37)(34,38);
s3 := Sym(38)!( 5, 6)( 7,11)( 8,12)( 9,14)(10,13)(15,19)(16,20)(17,22)(18,21)
(25,26)(27,35)(28,36)(29,38)(30,37)(33,34);
s4 := Sym(38)!( 4, 5)( 7,11)( 8,13)( 9,12)(10,14)(16,17)(19,23)(20,25)(21,24)
(22,26)(28,29)(31,35)(32,37)(33,36)(34,38);
s5 := Sym(38)!( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)
(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)(37,38);
poly := sub<Sym(38)|s0,s1,s2,s3,s4,s5>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s5*s0*s5,
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5,
s1*s2*s1*s2*s1*s2, s3*s4*s3*s4*s3*s4,
s4*s5*s4*s5*s4*s5*s4*s5, s3*s5*s4*s3*s5*s4*s3*s5*s4,
s3*s1*s2*s3*s2*s3*s1*s2*s3*s2, s4*s2*s3*s2*s3*s4*s2*s3*s2*s3 >;
to this polytope