Polytope of Type {2,6,12,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,6,12,2}*864b
if this polytope has a name.
Group : SmallGroup(864,4007)
Rank : 5
Schlafli Type : {2,6,12,2}
Number of vertices, edges, etc : 2, 9, 54, 18, 2
Order of s0s1s2s3s4 : 4
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {2,6,12,2,2} of size 1728
Vertex Figure Of :
   {2,2,6,12,2} of size 1728
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {2,6,4,2}*288
Covers (Minimal Covers in Boldface) :
   2-fold covers : {2,6,12,4}*1728b, {2,6,12,2}*1728f
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 6, 9)( 7,10)( 8,11)(15,18)(16,19)(17,20);;
s2 := ( 4, 5)( 6, 7)( 9,11)(12,18)(13,20)(14,19)(16,17);;
s3 := ( 3,13)( 4,12)( 5,14)( 6,16)( 7,15)( 8,17)( 9,19)(10,18)(11,20);;
s4 := (21,22);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s3*s4*s3*s4, s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s1*s3*s2*s1*s2*s1*s3*s2*s1*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(22)!(1,2);
s1 := Sym(22)!( 6, 9)( 7,10)( 8,11)(15,18)(16,19)(17,20);
s2 := Sym(22)!( 4, 5)( 6, 7)( 9,11)(12,18)(13,20)(14,19)(16,17);
s3 := Sym(22)!( 3,13)( 4,12)( 5,14)( 6,16)( 7,15)( 8,17)( 9,19)(10,18)(11,20);
s4 := Sym(22)!(21,22);
poly := sub<Sym(22)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s1*s3*s2*s1*s2*s1*s3*s2*s1*s2*s3 >; 
 

to this polytope