include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,6,9,2,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,6,9,2,2}*864
if this polytope has a name.
Group : SmallGroup(864,4032)
Rank : 6
Schlafli Type : {2,6,9,2,2}
Number of vertices, edges, etc : 2, 6, 27, 9, 2, 2
Order of s0s1s2s3s4s5 : 18
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{2,6,9,2,2,2} of size 1728
Vertex Figure Of :
{2,2,6,9,2,2} of size 1728
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {2,2,9,2,2}*288, {2,6,3,2,2}*288
9-fold quotients : {2,2,3,2,2}*96
Covers (Minimal Covers in Boldface) :
2-fold covers : {2,6,9,2,4}*1728, {4,6,9,2,2}*1728, {2,6,18,2,2}*1728b
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 6, 7)( 9,10)(12,13)(15,16)(18,19)(21,22)(24,25)(26,27)(28,29);;
s2 := ( 3, 6)( 4,12)( 5, 9)( 8,18)(10,13)(11,15)(14,24)(16,19)(17,21)(20,28)
(22,25)(23,26)(27,29);;
s3 := ( 3, 4)( 5, 8)( 6,10)( 7, 9)(11,14)(12,16)(13,15)(17,20)(18,22)(19,21)
(24,27)(25,26)(28,29);;
s4 := (30,31);;
s5 := (32,33);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s3*s4*s3*s4, s0*s5*s0*s5,
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5,
s4*s5*s4*s5, s3*s1*s2*s1*s2*s3*s1*s2*s1*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(33)!(1,2);
s1 := Sym(33)!( 6, 7)( 9,10)(12,13)(15,16)(18,19)(21,22)(24,25)(26,27)(28,29);
s2 := Sym(33)!( 3, 6)( 4,12)( 5, 9)( 8,18)(10,13)(11,15)(14,24)(16,19)(17,21)
(20,28)(22,25)(23,26)(27,29);
s3 := Sym(33)!( 3, 4)( 5, 8)( 6,10)( 7, 9)(11,14)(12,16)(13,15)(17,20)(18,22)
(19,21)(24,27)(25,26)(28,29);
s4 := Sym(33)!(30,31);
s5 := Sym(33)!(32,33);
poly := sub<Sym(33)|s0,s1,s2,s3,s4,s5>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5,
s3*s5*s3*s5, s4*s5*s4*s5, s3*s1*s2*s1*s2*s3*s1*s2*s1*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope