include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {3,2,12,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,2,12,6}*864a
if this polytope has a name.
Group : SmallGroup(864,4368)
Rank : 5
Schlafli Type : {3,2,12,6}
Number of vertices, edges, etc : 3, 3, 12, 36, 6
Order of s0s1s2s3s4 : 12
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{3,2,12,6,2} of size 1728
Vertex Figure Of :
{2,3,2,12,6} of size 1728
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {3,2,6,6}*432a
3-fold quotients : {3,2,12,2}*288, {3,2,4,6}*288a
6-fold quotients : {3,2,2,6}*144, {3,2,6,2}*144
9-fold quotients : {3,2,4,2}*96
12-fold quotients : {3,2,2,3}*72, {3,2,3,2}*72
18-fold quotients : {3,2,2,2}*48
Covers (Minimal Covers in Boldface) :
2-fold covers : {3,2,24,6}*1728a, {3,2,12,12}*1728a, {6,2,12,6}*1728a
Permutation Representation (GAP) :
s0 := (2,3);;
s1 := (1,2);;
s2 := ( 4,40)( 5,41)( 6,42)( 7,46)( 8,47)( 9,48)(10,43)(11,44)(12,45)(13,49)
(14,50)(15,51)(16,55)(17,56)(18,57)(19,52)(20,53)(21,54)(22,67)(23,68)(24,69)
(25,73)(26,74)(27,75)(28,70)(29,71)(30,72)(31,58)(32,59)(33,60)(34,64)(35,65)
(36,66)(37,61)(38,62)(39,63);;
s3 := ( 4,61)( 5,63)( 6,62)( 7,58)( 8,60)( 9,59)(10,64)(11,66)(12,65)(13,70)
(14,72)(15,71)(16,67)(17,69)(18,68)(19,73)(20,75)(21,74)(22,43)(23,45)(24,44)
(25,40)(26,42)(27,41)(28,46)(29,48)(30,47)(31,52)(32,54)(33,53)(34,49)(35,51)
(36,50)(37,55)(38,57)(39,56);;
s4 := ( 4, 5)( 7, 8)(10,11)(13,14)(16,17)(19,20)(22,23)(25,26)(28,29)(31,32)
(34,35)(37,38)(40,41)(43,44)(46,47)(49,50)(52,53)(55,56)(58,59)(61,62)(64,65)
(67,68)(70,71)(73,74);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s0*s1*s0*s1*s0*s1, s2*s3*s4*s3*s2*s3*s4*s3,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(75)!(2,3);
s1 := Sym(75)!(1,2);
s2 := Sym(75)!( 4,40)( 5,41)( 6,42)( 7,46)( 8,47)( 9,48)(10,43)(11,44)(12,45)
(13,49)(14,50)(15,51)(16,55)(17,56)(18,57)(19,52)(20,53)(21,54)(22,67)(23,68)
(24,69)(25,73)(26,74)(27,75)(28,70)(29,71)(30,72)(31,58)(32,59)(33,60)(34,64)
(35,65)(36,66)(37,61)(38,62)(39,63);
s3 := Sym(75)!( 4,61)( 5,63)( 6,62)( 7,58)( 8,60)( 9,59)(10,64)(11,66)(12,65)
(13,70)(14,72)(15,71)(16,67)(17,69)(18,68)(19,73)(20,75)(21,74)(22,43)(23,45)
(24,44)(25,40)(26,42)(27,41)(28,46)(29,48)(30,47)(31,52)(32,54)(33,53)(34,49)
(35,51)(36,50)(37,55)(38,57)(39,56);
s4 := Sym(75)!( 4, 5)( 7, 8)(10,11)(13,14)(16,17)(19,20)(22,23)(25,26)(28,29)
(31,32)(34,35)(37,38)(40,41)(43,44)(46,47)(49,50)(52,53)(55,56)(58,59)(61,62)
(64,65)(67,68)(70,71)(73,74);
poly := sub<Sym(75)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s1*s0*s1*s0*s1,
s2*s3*s4*s3*s2*s3*s4*s3, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope