Polytope of Type {12,6,2,3}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {12,6,2,3}*864c
if this polytope has a name.
Group : SmallGroup(864,4406)
Rank : 5
Schlafli Type : {12,6,2,3}
Number of vertices, edges, etc : 12, 36, 6, 3, 3
Order of s0s1s2s3s4 : 12
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {12,6,2,3,2} of size 1728
Vertex Figure Of :
   {2,12,6,2,3} of size 1728
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {6,6,2,3}*432b
   3-fold quotients : {4,6,2,3}*288a
   4-fold quotients : {6,3,2,3}*216
   6-fold quotients : {2,6,2,3}*144
   9-fold quotients : {4,2,2,3}*96
   12-fold quotients : {2,3,2,3}*72
   18-fold quotients : {2,2,2,3}*48
Covers (Minimal Covers in Boldface) :
   2-fold covers : {12,12,2,3}*1728b, {24,6,2,3}*1728c, {12,6,2,6}*1728c
Permutation Representation (GAP) :
s0 := ( 2, 3)( 5, 6)( 8, 9)(11,12)(14,15)(17,18)(19,28)(20,30)(21,29)(22,31)
(23,33)(24,32)(25,34)(26,36)(27,35)(38,39)(41,42)(44,45)(47,48)(50,51)(53,54)
(55,64)(56,66)(57,65)(58,67)(59,69)(60,68)(61,70)(62,72)(63,71);;
s1 := ( 1,56)( 2,55)( 3,57)( 4,62)( 5,61)( 6,63)( 7,59)( 8,58)( 9,60)(10,65)
(11,64)(12,66)(13,71)(14,70)(15,72)(16,68)(17,67)(18,69)(19,38)(20,37)(21,39)
(22,44)(23,43)(24,45)(25,41)(26,40)(27,42)(28,47)(29,46)(30,48)(31,53)(32,52)
(33,54)(34,50)(35,49)(36,51);;
s2 := ( 1,40)( 2,42)( 3,41)( 4,37)( 5,39)( 6,38)( 7,43)( 8,45)( 9,44)(10,49)
(11,51)(12,50)(13,46)(14,48)(15,47)(16,52)(17,54)(18,53)(19,58)(20,60)(21,59)
(22,55)(23,57)(24,56)(25,61)(26,63)(27,62)(28,67)(29,69)(30,68)(31,64)(32,66)
(33,65)(34,70)(35,72)(36,71);;
s3 := (74,75);;
s4 := (73,74);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s3*s4*s3*s4*s3*s4, s2*s0*s1*s0*s1*s2*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(75)!( 2, 3)( 5, 6)( 8, 9)(11,12)(14,15)(17,18)(19,28)(20,30)(21,29)
(22,31)(23,33)(24,32)(25,34)(26,36)(27,35)(38,39)(41,42)(44,45)(47,48)(50,51)
(53,54)(55,64)(56,66)(57,65)(58,67)(59,69)(60,68)(61,70)(62,72)(63,71);
s1 := Sym(75)!( 1,56)( 2,55)( 3,57)( 4,62)( 5,61)( 6,63)( 7,59)( 8,58)( 9,60)
(10,65)(11,64)(12,66)(13,71)(14,70)(15,72)(16,68)(17,67)(18,69)(19,38)(20,37)
(21,39)(22,44)(23,43)(24,45)(25,41)(26,40)(27,42)(28,47)(29,46)(30,48)(31,53)
(32,52)(33,54)(34,50)(35,49)(36,51);
s2 := Sym(75)!( 1,40)( 2,42)( 3,41)( 4,37)( 5,39)( 6,38)( 7,43)( 8,45)( 9,44)
(10,49)(11,51)(12,50)(13,46)(14,48)(15,47)(16,52)(17,54)(18,53)(19,58)(20,60)
(21,59)(22,55)(23,57)(24,56)(25,61)(26,63)(27,62)(28,67)(29,69)(30,68)(31,64)
(32,66)(33,65)(34,70)(35,72)(36,71);
s3 := Sym(75)!(74,75);
s4 := Sym(75)!(73,74);
poly := sub<Sym(75)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4*s3*s4, 
s2*s0*s1*s0*s1*s2*s0*s1*s0*s1, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope