include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,12,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,12,6}*864d
if this polytope has a name.
Group : SmallGroup(864,4669)
Rank : 4
Schlafli Type : {4,12,6}
Number of vertices, edges, etc : 4, 36, 54, 9
Order of s0s1s2s3 : 12
Order of s0s1s2s3s2s1 : 2
Special Properties :
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{4,12,6,2} of size 1728
Vertex Figure Of :
{2,4,12,6} of size 1728
Quotients (Maximal Quotients in Boldface) :
No Regular Quotients.
Covers (Minimal Covers in Boldface) :
2-fold covers : {4,12,6}*1728r, {4,12,6}*1728s
Permutation Representation (GAP) :
s0 := ( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,11)(10,12)(13,15)(14,16)(17,19)(18,20)
(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36);;
s1 := ( 2, 3)( 5,13)( 6,15)( 7,14)( 8,16)( 9,25)(10,27)(11,26)(12,28)(18,19)
(21,29)(22,31)(23,30)(24,32)(34,35);;
s2 := ( 2, 4)( 5, 9)( 6,12)( 7,11)( 8,10)(14,16)(17,21)(18,24)(19,23)(20,22)
(26,28)(29,33)(30,36)(31,35)(32,34);;
s3 := ( 1,17)( 2,18)( 3,19)( 4,20)( 5,13)( 6,14)( 7,15)( 8,16)( 9,21)(10,22)
(11,23)(12,24)(25,29)(26,30)(27,31)(28,32);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s1*s2*s3*s2*s3*s1*s2*s3*s1*s2*s3*s2*s1*s2,
s1*s2*s1*s2*s3*s1*s2*s1*s2*s3*s1*s2*s1*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(36)!( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,11)(10,12)(13,15)(14,16)(17,19)
(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36);
s1 := Sym(36)!( 2, 3)( 5,13)( 6,15)( 7,14)( 8,16)( 9,25)(10,27)(11,26)(12,28)
(18,19)(21,29)(22,31)(23,30)(24,32)(34,35);
s2 := Sym(36)!( 2, 4)( 5, 9)( 6,12)( 7,11)( 8,10)(14,16)(17,21)(18,24)(19,23)
(20,22)(26,28)(29,33)(30,36)(31,35)(32,34);
s3 := Sym(36)!( 1,17)( 2,18)( 3,19)( 4,20)( 5,13)( 6,14)( 7,15)( 8,16)( 9,21)
(10,22)(11,23)(12,24)(25,29)(26,30)(27,31)(28,32);
poly := sub<Sym(36)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s1*s0*s1*s0*s1*s0*s1, s0*s1*s2*s1*s0*s1*s2*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s1*s2*s3*s2*s3*s1*s2*s3*s1*s2*s3*s2*s1*s2,
s1*s2*s1*s2*s3*s1*s2*s1*s2*s3*s1*s2*s1*s2*s3 >;
References : None.
to this polytope