include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,3,2,3}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,3,2,3}*864
if this polytope has a name.
Group : SmallGroup(864,4673)
Rank : 5
Schlafli Type : {6,3,2,3}
Number of vertices, edges, etc : 24, 36, 12, 3, 3
Order of s0s1s2s3s4 : 12
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{6,3,2,3,2} of size 1728
Vertex Figure Of :
{2,6,3,2,3} of size 1728
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {6,3,2,3}*288
4-fold quotients : {6,3,2,3}*216
6-fold quotients : {3,3,2,3}*144
12-fold quotients : {2,3,2,3}*72
Covers (Minimal Covers in Boldface) :
2-fold covers : {12,3,2,3}*1728, {6,3,2,6}*1728, {6,6,2,3}*1728a
Permutation Representation (GAP) :
s0 := ( 3, 4)( 7, 8)(11,12);;
s1 := ( 2, 3)( 5, 9)( 6,11)( 7,10)( 8,12);;
s2 := ( 1, 6)( 2, 5)( 3, 7)( 4, 8)( 9,10);;
s3 := (14,15);;
s4 := (13,14);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s1*s2*s1*s2*s1*s2, s3*s4*s3*s4*s3*s4,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(15)!( 3, 4)( 7, 8)(11,12);
s1 := Sym(15)!( 2, 3)( 5, 9)( 6,11)( 7,10)( 8,12);
s2 := Sym(15)!( 1, 6)( 2, 5)( 3, 7)( 4, 8)( 9,10);
s3 := Sym(15)!(14,15);
s4 := Sym(15)!(13,14);
poly := sub<Sym(15)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s1*s2*s1*s2*s1*s2,
s3*s4*s3*s4*s3*s4, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1 >;
to this polytope