include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,4,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,4,6}*864a
Also Known As : {{6,4|2},{4,6}4}. if this polytope has another name.
Group : SmallGroup(864,4686)
Rank : 4
Schlafli Type : {6,4,6}
Number of vertices, edges, etc : 6, 36, 36, 18
Order of s0s1s2s3 : 12
Order of s0s1s2s3s2s1 : 2
Special Properties :
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{6,4,6,2} of size 1728
Vertex Figure Of :
{2,6,4,6} of size 1728
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {6,4,6}*432b
3-fold quotients : {2,4,6}*288
6-fold quotients : {2,4,6}*144
9-fold quotients : {6,4,2}*96a
18-fold quotients : {6,2,2}*48
27-fold quotients : {2,4,2}*32
36-fold quotients : {3,2,2}*24
54-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
2-fold covers : {6,8,6}*1728b, {12,4,6}*1728a, {6,4,12}*1728b
Permutation Representation (GAP) :
s0 := ( 2, 3)( 5, 6)( 8, 9)(11,12)(14,15)(17,18)(20,21)(23,24)(26,27)(29,30)
(32,33)(35,36)(38,39)(41,42)(44,45)(47,48)(50,51)(53,54);;
s1 := ( 1, 2)( 4,11)( 5,10)( 6,12)( 7,20)( 8,19)( 9,21)(13,14)(16,23)(17,22)
(18,24)(25,26)(28,29)(31,38)(32,37)(33,39)(34,47)(35,46)(36,48)(40,41)(43,50)
(44,49)(45,51)(52,53);;
s2 := (10,19)(11,20)(12,21)(13,22)(14,23)(15,24)(16,25)(17,26)(18,27)(37,46)
(38,47)(39,48)(40,49)(41,50)(42,51)(43,52)(44,53)(45,54);;
s3 := ( 1,40)( 2,41)( 3,42)( 4,37)( 5,38)( 6,39)( 7,43)( 8,44)( 9,45)(10,31)
(11,32)(12,33)(13,28)(14,29)(15,30)(16,34)(17,35)(18,36)(19,49)(20,50)(21,51)
(22,46)(23,47)(24,48)(25,52)(26,53)(27,54);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2, s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(54)!( 2, 3)( 5, 6)( 8, 9)(11,12)(14,15)(17,18)(20,21)(23,24)(26,27)
(29,30)(32,33)(35,36)(38,39)(41,42)(44,45)(47,48)(50,51)(53,54);
s1 := Sym(54)!( 1, 2)( 4,11)( 5,10)( 6,12)( 7,20)( 8,19)( 9,21)(13,14)(16,23)
(17,22)(18,24)(25,26)(28,29)(31,38)(32,37)(33,39)(34,47)(35,46)(36,48)(40,41)
(43,50)(44,49)(45,51)(52,53);
s2 := Sym(54)!(10,19)(11,20)(12,21)(13,22)(14,23)(15,24)(16,25)(17,26)(18,27)
(37,46)(38,47)(39,48)(40,49)(41,50)(42,51)(43,52)(44,53)(45,54);
s3 := Sym(54)!( 1,40)( 2,41)( 3,42)( 4,37)( 5,38)( 6,39)( 7,43)( 8,44)( 9,45)
(10,31)(11,32)(12,33)(13,28)(14,29)(15,30)(16,34)(17,35)(18,36)(19,49)(20,50)
(21,51)(22,46)(23,47)(24,48)(25,52)(26,53)(27,54);
poly := sub<Sym(54)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s1*s2*s1*s2*s1*s2,
s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
References : None.
to this polytope