Polytope of Type {3,2,4,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,2,4,4}*864
if this polytope has a name.
Group : SmallGroup(864,4686)
Rank : 5
Schlafli Type : {3,2,4,4}
Number of vertices, edges, etc : 3, 3, 18, 36, 18
Order of s0s1s2s3s4 : 6
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {3,2,4,4,2} of size 1728
Vertex Figure Of :
   {2,3,2,4,4} of size 1728
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {3,2,4,4}*432
   18-fold quotients : {3,2,2,2}*48
Covers (Minimal Covers in Boldface) :
   2-fold covers : {3,2,4,4}*1728, {6,2,4,4}*1728
Permutation Representation (GAP) :
s0 := (2,3);;
s1 := (1,2);;
s2 := ( 7,10)( 8,11)( 9,12)(16,19)(17,20)(18,21)(25,28)(26,29)(27,30)(34,37)
(35,38)(36,39)(40,49)(41,50)(42,51)(43,55)(44,56)(45,57)(46,52)(47,53)(48,54)
(58,67)(59,68)(60,69)(61,73)(62,74)(63,75)(64,70)(65,71)(66,72);;
s3 := ( 4,40)( 5,43)( 6,46)( 7,41)( 8,44)( 9,47)(10,42)(11,45)(12,48)(13,49)
(14,52)(15,55)(16,50)(17,53)(18,56)(19,51)(20,54)(21,57)(22,58)(23,61)(24,64)
(25,59)(26,62)(27,65)(28,60)(29,63)(30,66)(31,67)(32,70)(33,73)(34,68)(35,71)
(36,74)(37,69)(38,72)(39,75);;
s4 := ( 4,32)( 5,31)( 6,33)( 7,35)( 8,34)( 9,36)(10,38)(11,37)(12,39)(13,23)
(14,22)(15,24)(16,26)(17,25)(18,27)(19,29)(20,28)(21,30)(40,59)(41,58)(42,60)
(43,62)(44,61)(45,63)(46,65)(47,64)(48,66)(49,68)(50,67)(51,69)(52,71)(53,70)
(54,72)(55,74)(56,73)(57,75);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s0*s1*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3, 
s3*s4*s3*s4*s3*s4*s3*s4, s4*s2*s3*s4*s2*s3*s4*s2*s3*s4*s2*s3*s4*s2*s3*s4*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(75)!(2,3);
s1 := Sym(75)!(1,2);
s2 := Sym(75)!( 7,10)( 8,11)( 9,12)(16,19)(17,20)(18,21)(25,28)(26,29)(27,30)
(34,37)(35,38)(36,39)(40,49)(41,50)(42,51)(43,55)(44,56)(45,57)(46,52)(47,53)
(48,54)(58,67)(59,68)(60,69)(61,73)(62,74)(63,75)(64,70)(65,71)(66,72);
s3 := Sym(75)!( 4,40)( 5,43)( 6,46)( 7,41)( 8,44)( 9,47)(10,42)(11,45)(12,48)
(13,49)(14,52)(15,55)(16,50)(17,53)(18,56)(19,51)(20,54)(21,57)(22,58)(23,61)
(24,64)(25,59)(26,62)(27,65)(28,60)(29,63)(30,66)(31,67)(32,70)(33,73)(34,68)
(35,71)(36,74)(37,69)(38,72)(39,75);
s4 := Sym(75)!( 4,32)( 5,31)( 6,33)( 7,35)( 8,34)( 9,36)(10,38)(11,37)(12,39)
(13,23)(14,22)(15,24)(16,26)(17,25)(18,27)(19,29)(20,28)(21,30)(40,59)(41,58)
(42,60)(43,62)(44,61)(45,63)(46,65)(47,64)(48,66)(49,68)(50,67)(51,69)(52,71)
(53,70)(54,72)(55,74)(56,73)(57,75);
poly := sub<Sym(75)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3, s3*s4*s3*s4*s3*s4*s3*s4, 
s4*s2*s3*s4*s2*s3*s4*s2*s3*s4*s2*s3*s4*s2*s3*s4*s2*s3 >; 
 

to this polytope