include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {16,2,14}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {16,2,14}*896
if this polytope has a name.
Group : SmallGroup(896,14227)
Rank : 4
Schlafli Type : {16,2,14}
Number of vertices, edges, etc : 16, 16, 14, 14
Order of s0s1s2s3 : 112
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{16,2,14,2} of size 1792
Vertex Figure Of :
{2,16,2,14} of size 1792
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {16,2,7}*448, {8,2,14}*448
4-fold quotients : {8,2,7}*224, {4,2,14}*224
7-fold quotients : {16,2,2}*128
8-fold quotients : {4,2,7}*112, {2,2,14}*112
14-fold quotients : {8,2,2}*64
16-fold quotients : {2,2,7}*56
28-fold quotients : {4,2,2}*32
56-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
2-fold covers : {16,4,14}*1792a, {16,2,28}*1792, {32,2,14}*1792
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11)(12,13)(14,15);;
s1 := ( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16);;
s2 := (19,20)(21,22)(23,24)(25,26)(27,28)(29,30);;
s3 := (17,21)(18,19)(20,25)(22,23)(24,29)(26,27)(28,30);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(30)!( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11)(12,13)(14,15);
s1 := Sym(30)!( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16);
s2 := Sym(30)!(19,20)(21,22)(23,24)(25,26)(27,28)(29,30);
s3 := Sym(30)!(17,21)(18,19)(20,25)(22,23)(24,29)(26,27)(28,30);
poly := sub<Sym(30)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope