include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {14,4,4,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {14,4,4,2}*896
if this polytope has a name.
Group : SmallGroup(896,17749)
Rank : 5
Schlafli Type : {14,4,4,2}
Number of vertices, edges, etc : 14, 28, 8, 4, 2
Order of s0s1s2s3s4 : 28
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{14,4,4,2,2} of size 1792
Vertex Figure Of :
{2,14,4,4,2} of size 1792
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {14,2,4,2}*448, {14,4,2,2}*448
4-fold quotients : {7,2,4,2}*224, {14,2,2,2}*224
7-fold quotients : {2,4,4,2}*128
8-fold quotients : {7,2,2,2}*112
14-fold quotients : {2,2,4,2}*64, {2,4,2,2}*64
28-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
2-fold covers : {14,4,4,4}*1792, {28,4,4,2}*1792, {14,4,8,2}*1792a, {14,8,4,2}*1792a, {14,4,8,2}*1792b, {14,8,4,2}*1792b, {14,4,4,2}*1792
Permutation Representation (GAP) :
s0 := ( 2, 7)( 3, 6)( 4, 5)( 9,14)(10,13)(11,12)(16,21)(17,20)(18,19)(23,28)
(24,27)(25,26)(30,35)(31,34)(32,33)(37,42)(38,41)(39,40)(44,49)(45,48)(46,47)
(51,56)(52,55)(53,54);;
s1 := ( 1, 2)( 3, 7)( 4, 6)( 8, 9)(10,14)(11,13)(15,16)(17,21)(18,20)(22,23)
(24,28)(25,27)(29,37)(30,36)(31,42)(32,41)(33,40)(34,39)(35,38)(43,51)(44,50)
(45,56)(46,55)(47,54)(48,53)(49,52);;
s2 := ( 1,29)( 2,30)( 3,31)( 4,32)( 5,33)( 6,34)( 7,35)( 8,36)( 9,37)(10,38)
(11,39)(12,40)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)
(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56);;
s3 := (29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)
(39,53)(40,54)(41,55)(42,56);;
s4 := (57,58);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s2*s3*s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(58)!( 2, 7)( 3, 6)( 4, 5)( 9,14)(10,13)(11,12)(16,21)(17,20)(18,19)
(23,28)(24,27)(25,26)(30,35)(31,34)(32,33)(37,42)(38,41)(39,40)(44,49)(45,48)
(46,47)(51,56)(52,55)(53,54);
s1 := Sym(58)!( 1, 2)( 3, 7)( 4, 6)( 8, 9)(10,14)(11,13)(15,16)(17,21)(18,20)
(22,23)(24,28)(25,27)(29,37)(30,36)(31,42)(32,41)(33,40)(34,39)(35,38)(43,51)
(44,50)(45,56)(46,55)(47,54)(48,53)(49,52);
s2 := Sym(58)!( 1,29)( 2,30)( 3,31)( 4,32)( 5,33)( 6,34)( 7,35)( 8,36)( 9,37)
(10,38)(11,39)(12,40)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)
(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56);
s3 := Sym(58)!(29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)
(38,52)(39,53)(40,54)(41,55)(42,56);
s4 := Sym(58)!(57,58);
poly := sub<Sym(58)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s3*s4*s3*s4, s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2, s1*s2*s3*s2*s1*s2*s3*s2,
s2*s3*s2*s3*s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope