Polytope of Type {2,14,2,4,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,14,2,4,2}*896
if this polytope has a name.
Group : SmallGroup(896,19315)
Rank : 6
Schlafli Type : {2,14,2,4,2}
Number of vertices, edges, etc : 2, 14, 14, 4, 4, 2
Order of s0s1s2s3s4s5 : 28
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {2,14,2,4,2,2} of size 1792
Vertex Figure Of :
   {2,2,14,2,4,2} of size 1792
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,7,2,4,2}*448, {2,14,2,2,2}*448
   4-fold quotients : {2,7,2,2,2}*224
   7-fold quotients : {2,2,2,4,2}*128
   14-fold quotients : {2,2,2,2,2}*64
Covers (Minimal Covers in Boldface) :
   2-fold covers : {2,14,2,4,4}*1792, {2,14,4,4,2}*1792, {4,14,2,4,2}*1792, {2,28,2,4,2}*1792, {2,14,2,8,2}*1792
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16);;
s2 := ( 3, 7)( 4, 5)( 6,11)( 8, 9)(10,15)(12,13)(14,16);;
s3 := (18,19);;
s4 := (17,18)(19,20);;
s5 := (21,22);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  s5 := F.6;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5, 
s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s0*s5*s0*s5, 
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5, 
s4*s5*s4*s5, s3*s4*s3*s4*s3*s4*s3*s4, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(22)!(1,2);
s1 := Sym(22)!( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16);
s2 := Sym(22)!( 3, 7)( 4, 5)( 6,11)( 8, 9)(10,15)(12,13)(14,16);
s3 := Sym(22)!(18,19);
s4 := Sym(22)!(17,18)(19,20);
s5 := Sym(22)!(21,22);
poly := sub<Sym(22)|s0,s1,s2,s3,s4,s5>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5, 
s3*s5*s3*s5, s4*s5*s4*s5, s3*s4*s3*s4*s3*s4*s3*s4, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope