include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {114,2,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {114,2,2}*912
if this polytope has a name.
Group : SmallGroup(912,221)
Rank : 4
Schlafli Type : {114,2,2}
Number of vertices, edges, etc : 114, 114, 2, 2
Order of s0s1s2s3 : 114
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{114,2,2,2} of size 1824
Vertex Figure Of :
{2,114,2,2} of size 1824
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {57,2,2}*456
3-fold quotients : {38,2,2}*304
6-fold quotients : {19,2,2}*152
19-fold quotients : {6,2,2}*48
38-fold quotients : {3,2,2}*24
57-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
2-fold covers : {228,2,2}*1824, {114,2,4}*1824, {114,4,2}*1824a
Permutation Representation (GAP) :
s0 := ( 2, 19)( 3, 18)( 4, 17)( 5, 16)( 6, 15)( 7, 14)( 8, 13)( 9, 12)
( 10, 11)( 20, 39)( 21, 57)( 22, 56)( 23, 55)( 24, 54)( 25, 53)( 26, 52)
( 27, 51)( 28, 50)( 29, 49)( 30, 48)( 31, 47)( 32, 46)( 33, 45)( 34, 44)
( 35, 43)( 36, 42)( 37, 41)( 38, 40)( 59, 76)( 60, 75)( 61, 74)( 62, 73)
( 63, 72)( 64, 71)( 65, 70)( 66, 69)( 67, 68)( 77, 96)( 78,114)( 79,113)
( 80,112)( 81,111)( 82,110)( 83,109)( 84,108)( 85,107)( 86,106)( 87,105)
( 88,104)( 89,103)( 90,102)( 91,101)( 92,100)( 93, 99)( 94, 98)( 95, 97);;
s1 := ( 1, 78)( 2, 77)( 3, 95)( 4, 94)( 5, 93)( 6, 92)( 7, 91)( 8, 90)
( 9, 89)( 10, 88)( 11, 87)( 12, 86)( 13, 85)( 14, 84)( 15, 83)( 16, 82)
( 17, 81)( 18, 80)( 19, 79)( 20, 59)( 21, 58)( 22, 76)( 23, 75)( 24, 74)
( 25, 73)( 26, 72)( 27, 71)( 28, 70)( 29, 69)( 30, 68)( 31, 67)( 32, 66)
( 33, 65)( 34, 64)( 35, 63)( 36, 62)( 37, 61)( 38, 60)( 39, 97)( 40, 96)
( 41,114)( 42,113)( 43,112)( 44,111)( 45,110)( 46,109)( 47,108)( 48,107)
( 49,106)( 50,105)( 51,104)( 52,103)( 53,102)( 54,101)( 55,100)( 56, 99)
( 57, 98);;
s2 := (115,116);;
s3 := (117,118);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(118)!( 2, 19)( 3, 18)( 4, 17)( 5, 16)( 6, 15)( 7, 14)( 8, 13)
( 9, 12)( 10, 11)( 20, 39)( 21, 57)( 22, 56)( 23, 55)( 24, 54)( 25, 53)
( 26, 52)( 27, 51)( 28, 50)( 29, 49)( 30, 48)( 31, 47)( 32, 46)( 33, 45)
( 34, 44)( 35, 43)( 36, 42)( 37, 41)( 38, 40)( 59, 76)( 60, 75)( 61, 74)
( 62, 73)( 63, 72)( 64, 71)( 65, 70)( 66, 69)( 67, 68)( 77, 96)( 78,114)
( 79,113)( 80,112)( 81,111)( 82,110)( 83,109)( 84,108)( 85,107)( 86,106)
( 87,105)( 88,104)( 89,103)( 90,102)( 91,101)( 92,100)( 93, 99)( 94, 98)
( 95, 97);
s1 := Sym(118)!( 1, 78)( 2, 77)( 3, 95)( 4, 94)( 5, 93)( 6, 92)( 7, 91)
( 8, 90)( 9, 89)( 10, 88)( 11, 87)( 12, 86)( 13, 85)( 14, 84)( 15, 83)
( 16, 82)( 17, 81)( 18, 80)( 19, 79)( 20, 59)( 21, 58)( 22, 76)( 23, 75)
( 24, 74)( 25, 73)( 26, 72)( 27, 71)( 28, 70)( 29, 69)( 30, 68)( 31, 67)
( 32, 66)( 33, 65)( 34, 64)( 35, 63)( 36, 62)( 37, 61)( 38, 60)( 39, 97)
( 40, 96)( 41,114)( 42,113)( 43,112)( 44,111)( 45,110)( 46,109)( 47,108)
( 48,107)( 49,106)( 50,105)( 51,104)( 52,103)( 53,102)( 54,101)( 55,100)
( 56, 99)( 57, 98);
s2 := Sym(118)!(115,116);
s3 := Sym(118)!(117,118);
poly := sub<Sym(118)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope