include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {12,5,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {12,5,2}*960
if this polytope has a name.
Group : SmallGroup(960,10889)
Rank : 4
Schlafli Type : {12,5,2}
Number of vertices, edges, etc : 48, 120, 20, 2
Order of s0s1s2s3 : 20
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{12,5,2,2} of size 1920
Vertex Figure Of :
{2,12,5,2} of size 1920
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {6,5,2}*480b
4-fold quotients : {3,5,2}*240, {6,5,2}*240b, {6,5,2}*240c
8-fold quotients : {3,5,2}*120
Covers (Minimal Covers in Boldface) :
2-fold covers : {12,10,2}*1920e
Permutation Representation (GAP) :
s0 := ( 2,10)( 3,12)( 4,17)( 5,19)( 7,38)(11,28)(13,44)(14,43)(15,34)(20,23)
(21,36)(22,37)(24,26)(29,33)(30,31)(32,35)(39,47)(40,46)(41,45)(42,48);;
s1 := ( 1,13)( 2,40)( 3, 4)( 5,30)( 6,35)( 7,25)( 8,23)( 9,41)(10,21)(11,19)
(12,32)(14,16)(15,17)(18,29)(20,46)(22,26)(24,42)(27,39)(28,43)(31,33)(34,44)
(36,38)(37,47)(45,48);;
s2 := ( 1, 8)( 2, 4)( 3,33)( 5,24)( 6,25)( 7,21)( 9,16)(10,17)(11,32)(12,29)
(13,31)(14,34)(15,43)(18,27)(19,26)(20,46)(22,39)(23,40)(28,35)(30,44)(36,38)
(37,47)(41,42)(45,48);;
s3 := (49,50);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, s2*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s0*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(50)!( 2,10)( 3,12)( 4,17)( 5,19)( 7,38)(11,28)(13,44)(14,43)(15,34)
(20,23)(21,36)(22,37)(24,26)(29,33)(30,31)(32,35)(39,47)(40,46)(41,45)(42,48);
s1 := Sym(50)!( 1,13)( 2,40)( 3, 4)( 5,30)( 6,35)( 7,25)( 8,23)( 9,41)(10,21)
(11,19)(12,32)(14,16)(15,17)(18,29)(20,46)(22,26)(24,42)(27,39)(28,43)(31,33)
(34,44)(36,38)(37,47)(45,48);
s2 := Sym(50)!( 1, 8)( 2, 4)( 3,33)( 5,24)( 6,25)( 7,21)( 9,16)(10,17)(11,32)
(12,29)(13,31)(14,34)(15,43)(18,27)(19,26)(20,46)(22,39)(23,40)(28,35)(30,44)
(36,38)(37,47)(41,42)(45,48);
s3 := Sym(50)!(49,50);
poly := sub<Sym(50)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s0*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1 >;
to this polytope