Polytope of Type {4,5,3}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,5,3}*960
if this polytope has a name.
Group : SmallGroup(960,11358)
Rank : 4
Schlafli Type : {4,5,3}
Number of vertices, edges, etc : 16, 80, 60, 6
Order of s0s1s2s3 : 5
Order of s0s1s2s3s2s1 : 4
Special Properties :
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {4,5,3,2} of size 1920
Vertex Figure Of :
   {2,4,5,3} of size 1920
Quotients (Maximal Quotients in Boldface) :
   No Regular Quotients.
Covers (Minimal Covers in Boldface) :
   2-fold covers : {4,5,3}*1920c, {4,5,3}*1920d, {4,5,6}*1920b, {4,5,6}*1920c, {4,10,3}*1920a, {4,10,3}*1920b, {4,10,3}*1920c, {4,10,3}*1920d
Permutation Representation (GAP) :
s0 := (4,8)(5,7);;
s1 := (2,4)(3,5)(6,7)(8,9);;
s2 := ( 1, 2)( 4, 5)( 7, 8)( 9,10);;
s3 := (2,3)(4,5)(6,9)(7,8);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3*s2*s3, 
s0*s1*s0*s1*s0*s1*s0*s1, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2, 
s0*s1*s2*s1*s3*s0*s1*s2*s1*s3*s0*s1*s2*s1*s3, 
s1*s3*s2*s1*s3*s2*s1*s3*s2*s1*s3*s2*s1*s3*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(10)!(4,8)(5,7);
s1 := Sym(10)!(2,4)(3,5)(6,7)(8,9);
s2 := Sym(10)!( 1, 2)( 4, 5)( 7, 8)( 9,10);
s3 := Sym(10)!(2,3)(4,5)(6,9)(7,8);
poly := sub<Sym(10)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2, 
s0*s1*s2*s1*s3*s0*s1*s2*s1*s3*s0*s1*s2*s1*s3, 
s1*s3*s2*s1*s3*s2*s1*s3*s2*s1*s3*s2*s1*s3*s2 >; 
 
References : None.
to this polytope