include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,4,2,5}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,4,2,5}*960
if this polytope has a name.
Group : SmallGroup(960,11372)
Rank : 5
Schlafli Type : {6,4,2,5}
Number of vertices, edges, etc : 12, 24, 8, 5, 5
Order of s0s1s2s3s4 : 30
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{6,4,2,5,2} of size 1920
Vertex Figure Of :
{2,6,4,2,5} of size 1920
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {3,4,2,5}*480, {6,4,2,5}*480b, {6,4,2,5}*480c
4-fold quotients : {3,4,2,5}*240, {6,2,2,5}*240
8-fold quotients : {3,2,2,5}*120
12-fold quotients : {2,2,2,5}*80
Covers (Minimal Covers in Boldface) :
2-fold covers : {12,4,2,5}*1920b, {6,4,2,5}*1920b, {12,4,2,5}*1920c, {6,8,2,5}*1920b, {6,8,2,5}*1920c, {6,4,2,10}*1920
Permutation Representation (GAP) :
s0 := ( 8, 9)(11,12)(13,14)(15,16);;
s1 := ( 1, 2)( 3, 5)( 4,11)( 6, 8)( 7,15)( 9,12)(10,13)(14,16);;
s2 := ( 1, 7)( 2,10)( 3, 4)( 5, 6)( 8,14)( 9,13)(11,16)(12,15);;
s3 := (18,19)(20,21);;
s4 := (17,18)(19,20);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s1*s2*s1*s2*s1*s2*s1*s2, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(21)!( 8, 9)(11,12)(13,14)(15,16);
s1 := Sym(21)!( 1, 2)( 3, 5)( 4,11)( 6, 8)( 7,15)( 9,12)(10,13)(14,16);
s2 := Sym(21)!( 1, 7)( 2,10)( 3, 4)( 5, 6)( 8,14)( 9,13)(11,16)(12,15);
s3 := Sym(21)!(18,19)(20,21);
s4 := Sym(21)!(17,18)(19,20);
poly := sub<Sym(21)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s1*s2*s1*s2*s1*s2*s1*s2,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1 >;
to this polytope