Polytope of Type {5,6,8}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {5,6,8}*960b
if this polytope has a name.
Group : SmallGroup(960,5739)
Rank : 4
Schlafli Type : {5,6,8}
Number of vertices, edges, etc : 10, 30, 48, 8
Order of s0s1s2s3 : 40
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {5,6,8,2} of size 1920
Vertex Figure Of :
   {2,5,6,8} of size 1920
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {5,6,4}*480b
   4-fold quotients : {5,6,2}*240c
   8-fold quotients : {5,3,2}*120
Covers (Minimal Covers in Boldface) :
   2-fold covers : {5,6,16}*1920b, {5,6,8}*1920b, {10,6,8}*1920e, {10,6,8}*1920f
Permutation Representation (GAP) :
s0 := (10,11)(12,13);;
s1 := ( 9,10)(11,12);;
s2 := ( 2, 4)( 3, 6)( 5, 8)(10,13)(11,12);;
s3 := (1,2)(3,4)(5,6)(7,8);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s1*s2*s3*s2*s1*s2*s3*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1, 
s1*s2*s1*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s0, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(13)!(10,11)(12,13);
s1 := Sym(13)!( 9,10)(11,12);
s2 := Sym(13)!( 2, 4)( 3, 6)( 5, 8)(10,13)(11,12);
s3 := Sym(13)!(1,2)(3,4)(5,6)(7,8);
poly := sub<Sym(13)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s1*s2*s3*s2*s1*s2*s3*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1, 
s1*s2*s1*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s0, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 
References : None.
to this polytope