include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytopes of Type {8,8}
This page is part of the Atlas of Small Regular Polytopes
(See Other Polytopes of Rank 3)
There are 70 polytopes of this type in this atlas. They are :
- {8,8}*128a (SmallGroup(128,351))
- {8,8}*128b (SmallGroup(128,351))
- {8,8}*128c (SmallGroup(128,351))
- {8,8}*128d (SmallGroup(128,387))
- {8,8}*256a (SmallGroup(256,722))
- {8,8}*256b (SmallGroup(256,5078))
- {8,8}*256c (SmallGroup(256,5084))
- {8,8}*256d (SmallGroup(256,5084))
- {8,8}*256e (SmallGroup(256,6665))
- {8,8}*256f (SmallGroup(256,6665))
- {8,8}*256g (SmallGroup(256,6669))
- {8,8}*256h (SmallGroup(256,6669))
- {8,8}*336a (SmallGroup(336,208))
- {8,8}*336b (SmallGroup(336,208))
- {8,8}*512a (SmallGroup(512,32847))
- {8,8}*512b (SmallGroup(512,32848))
- {8,8}*512c (SmallGroup(512,32850))
- {8,8}*512d (SmallGroup(512,58326))
- {8,8}*512e (SmallGroup(512,58328))
- {8,8}*512f (SmallGroup(512,58328))
- {8,8}*512g (SmallGroup(512,58328))
- {8,8}*512h (SmallGroup(512,58338))
- {8,8}*512i (SmallGroup(512,58338))
- {8,8}*512j (SmallGroup(512,58342))
- {8,8}*512k (SmallGroup(512,58342))
- {8,8}*512l (SmallGroup(512,58342))
- {8,8}*512m (SmallGroup(512,58342))
- {8,8}*512n (SmallGroup(512,58342))
- {8,8}*512o (SmallGroup(512,58342))
- {8,8}*512p (SmallGroup(512,58354))
- {8,8}*512q (SmallGroup(512,58354))
- {8,8}*512r (SmallGroup(512,58358))
- {8,8}*512s (SmallGroup(512,58358))
- {8,8}*512t (SmallGroup(512,58358))
- {8,8}*672a (SmallGroup(672,1254))
- {8,8}*672b (SmallGroup(672,1254))
- {8,8}*672c (SmallGroup(672,1254))
- {8,8}*672d (SmallGroup(672,1254))
- {8,8}*672e (SmallGroup(672,1254))
- {8,8}*672f (SmallGroup(672,1254))
- {8,8}*720 (SmallGroup(720,764))
- {8,8}*784a (SmallGroup(784,161))
- {8,8}*784b (SmallGroup(784,161))
- {8,8}*1152a (SmallGroup(1152,12919))
- {8,8}*1152b (SmallGroup(1152,12921))
- {8,8}*1152c (SmallGroup(1152,12921))
- {8,8}*1152d (SmallGroup(1152,14487))
- {8,8}*1152e (SmallGroup(1152,157849))
- {8,8}*1152f (SmallGroup(1152,157849))
- {8,8}*1296 (SmallGroup(1296,3509))
- {8,8}*1344a (SmallGroup(1344,11295))
- {8,8}*1344b (SmallGroup(1344,11295))
- {8,8}*1344c (SmallGroup(1344,11295))
- {8,8}*1344d (SmallGroup(1344,11295))
- {8,8}*1344e (SmallGroup(1344,11295))
- {8,8}*1344f (SmallGroup(1344,11295))
- {8,8}*1344g (SmallGroup(1344,11295))
- {8,8}*1344h (SmallGroup(1344,11295))
- {8,8}*1344i (SmallGroup(1344,11684))
- {8,8}*1344j (SmallGroup(1344,11684))
- {8,8}*1440a (SmallGroup(1440,5841))
- {8,8}*1440b (SmallGroup(1440,5841))
- {8,8}*1440c (SmallGroup(1440,5841))
- {8,8}*1440d (SmallGroup(1440,5841))
- {8,8}*1440e (SmallGroup(1440,5841))
- {8,8}*1440f (SmallGroup(1440,5843))
- {8,8}*1440g (SmallGroup(1440,5843))
- {8,8}*1440h (SmallGroup(1440,5843))
- {8,8}*1568a (SmallGroup(1568,917))
- {8,8}*1568b (SmallGroup(1568,917))