Questions?
See the FAQ
or other info.

# Chiral Polytope of Type {6,6}

Regular Cover :{6,6}*1176b with group SmallGroup(1176,225) = C72 ⋊ D6 x C2of order 1176
Rank : 3
Schlafli Type : {6,6}
Rotation Group : SmallGroup(84,7) = (C7 ⋊ C6) x C2 of order 84
Number of vertices, edges, etc : 14, 42, 14
If Aut({6,6}*1176b)=<s0, s1, s2>, then this chiral polytope is ({6,6}*1176b)/N, where
N=<s0*s2*s1*s0*s2*s1*s0*s2*s1*s2*s1*s0*s2*s1*s2*s1> of order 7
Facet : (Regular) 6-gon
Vertex Figure : (Regular) 6-gon
Finitely Presented Group Representation of the Rotation Group(GAP) :
```F := FreeGroup("sig1","sig2");;
sig1 := F.1;;  sig2 := F.2;;
rels := [ sig1^-1*sig2^-1*sig1^-1*sig2^-1, sig1*sig1*sig1*sig1*sig1*sig1, sig1*sig1*sig2^-1*sig1*sig1*sig2^-1,
sig2*sig2*sig2*sig2*sig2*sig2, sig1*sig2^-1*sig1^-1*sig1^-1*sig2*sig2*sig2*sig1*sig2^-1*sig2^-1 ];;
rotpoly := F / rels;;

```
Finitely Presented Group Representation of the Rotation Group (Magma) :

```rotpoly<sig1,sig2> := Group< sig1,sig2 | sig1^-1*sig2^-1*sig1^-1*sig2^-1, sig1*sig1*sig1*sig1*sig1*sig1,
sig1*sig1*sig2^-1*sig1*sig1*sig2^-1, sig2*sig2*sig2*sig2*sig2*sig2,
sig1*sig2^-1*sig1^-1*sig1^-1*sig2*sig2*sig2*sig1*sig2^-1*sig2^-1 >;

```