Chiral Polytope of Type {8,4}

This page is part of the Atlas of Small Chiral Polytopes
Regular Cover :{8,4}*1600a with group SmallGroup(1600,6672) = D4 ⋊ (C52 ⋊ D4)of order 1600
Rank : 3
Schlafli Type : {8,4}
Rotation Group : SmallGroup(160,82) = C5 ⋊ ((C8 x C2) ⋊ C2) of order 160
Number of vertices, edges, etc : 40, 80, 20
If Aut({8,4}*1600a)=<s0, s1, s2>, then this chiral polytope is ({8,4}*1600a)/N, where
N=<s2*s1*s0*s1*s2*s1*s0*s2*s1*s0*s2*s1*s0*s1*s2*s1*s0*s2*s1*s0> of order 5
Facet : (Regular) 8-gon
Vertex Figure : (Regular) 4-gon
Finitely Presented Group Representation of the Rotation Group(GAP) :
F := FreeGroup("sig1","sig2");;
sig1 := F.1;;  sig2 := F.2;;  
rels := [ sig1^-1*sig2^-1*sig1^-1*sig2^-1, sig2*sig2*sig2*sig2, sig1*sig1*sig1*sig1*sig1*sig1*sig1*sig1, 
sig1*sig1*sig2^-1*sig1*sig1*sig1*sig2^-1*sig1, sig1^-1*sig2*sig1^-1*sig1^-1*sig2^-1*sig1*sig2^-1*sig1*sig2*sig2*sig1*sig2^-1 ];;
rotpoly := F / rels;;
 
Finitely Presented Group Representation of the Rotation Group (Magma) :

rotpoly<sig1,sig2> := Group< sig1,sig2 | sig1^-1*sig2^-1*sig1^-1*sig2^-1, sig2*sig2*sig2*sig2, 
sig1*sig1*sig1*sig1*sig1*sig1*sig1*sig1, sig1*sig1*sig2^-1*sig1*sig1*sig1*sig2^-1*sig1, 
sig1^-1*sig2*sig1^-1*sig1^-1*sig2^-1*sig1*sig2^-1*sig1*sig2*sig2*sig1*sig2^-1 >;