Chiral Polytope of Type {6,54}

This page is part of the Atlas of Small Chiral Polytopes
Regular Cover :{6,54}*1944a with group SmallGroup(1944,948) = (C27 x C3) ⋊ D6 x C2of order 1944
Rank : 3
Schlafli Type : {6,54}
Rotation Group : SmallGroup(324,67) = ((C27 ⋊ C3) ⋊ C2) x C2 of order 324
Number of vertices, edges, etc : 6, 162, 54
If Aut({6,54}*1944a)=<s0, s1, s2>, then this chiral polytope is ({6,54}*1944a)/N, where
N=<s0*s2*s1*s0*s2*s1*s2*s1*s0*s2*s1*s2*s1*s0*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1> of order 3
Facet : (Regular) 6-gon
Vertex Figure : (Regular) 54-gon
Finitely Presented Group Representation of the Rotation Group(GAP) :
F := FreeGroup("sig1","sig2");;
sig1 := F.1;;  sig2 := F.2;;  
rels := [ sig1^-1*sig2^-1*sig1^-1*sig2^-1, sig1*sig1*sig1*sig1*sig1*sig1, sig1*sig2^-1*sig2^-1*sig1*sig2^-1*sig2^-1, 
sig1*sig2^-1*sig1^-1*sig1^-1*sig2^-1*sig1*sig2^-1*sig1*sig1*sig2^-1, sig2*sig2*sig1^-1*sig2^-1*sig2^-1*sig2^-1*sig2^-1*sig2^-1*sig1^-1*sig2*sig2*sig2*sig2*sig2*sig2*sig2*sig2*sig2*sig2*sig1*sig2^-1*sig1 ];;
rotpoly := F / rels;;
 
Finitely Presented Group Representation of the Rotation Group (Magma) :

rotpoly<sig1,sig2> := Group< sig1,sig2 | sig1^-1*sig2^-1*sig1^-1*sig2^-1, sig1*sig1*sig1*sig1*sig1*sig1, 
sig1*sig2^-1*sig2^-1*sig1*sig2^-1*sig2^-1, sig1*sig2^-1*sig1^-1*sig1^-1*sig2^-1*sig1*sig2^-1*sig1*sig1*sig2^-1, 
sig2*sig2*sig1^-1*sig2^-1*sig2^-1*sig2^-1*sig2^-1*sig2^-1*sig1^-1*sig2*sig2*sig2*sig2*sig2*sig2*sig2*sig2*sig2*sig2*sig1*sig2^-1*sig1 >;