Chiral Polytope of Type {6,18}

This page is part of the Atlas of Small Chiral Polytopes
Regular Cover :{6,18}*648a with group SmallGroup(648,297) = (C3 x C9) ⋊ D6 x C2of order 648
Rank : 3
Schlafli Type : {6,18}
Rotation Group : SmallGroup(108,26) = (C9 ⋊ C6) x C2 of order 108
Number of vertices, edges, etc : 6, 54, 18
If Aut({6,18}*648a)=<s0, s1, s2>, then this chiral polytope is ({6,18}*648a)/N, where
N=<s0*s2*s1*s0*s2*s1*s2*s1*s0*s2*s1*s2*s1*s0*s2*s1> of order 3
Facet : (Regular) 6-gon
Vertex Figure : (Regular) 18-gon
Finitely Presented Group Representation of the Rotation Group(GAP) :
F := FreeGroup("sig1","sig2");;
sig1 := F.1;;  sig2 := F.2;;  
rels := [ sig1^-1*sig2^-1*sig1^-1*sig2^-1, sig1*sig1*sig1*sig1*sig1*sig1, sig1*sig2^-1*sig2^-1*sig1*sig2^-1*sig2^-1, 
sig2*sig2*sig1^-1*sig2^-1*sig1*sig2*sig2*sig1*sig2^-1*sig1 ];;
rotpoly := F / rels;;
 
Finitely Presented Group Representation of the Rotation Group (Magma) :

rotpoly<sig1,sig2> := Group< sig1,sig2 | sig1^-1*sig2^-1*sig1^-1*sig2^-1, sig1*sig1*sig1*sig1*sig1*sig1, 
sig1*sig2^-1*sig2^-1*sig1*sig2^-1*sig2^-1, sig2*sig2*sig1^-1*sig2^-1*sig1*sig2*sig2*sig1*sig2^-1*sig1 >;