Polytope of Type {2,10,10}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,10,10}*1000
if this polytope has a name.
Group : SmallGroup(1000,106)
Rank : 4
Schlafli Type : {2,10,10}
Number of vertices, edges, etc : 2, 25, 125, 25
Order of s0s1s2s3 : 10
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {2,10,10,2} of size 2000
Vertex Figure Of :
   {2,2,10,10} of size 2000
Quotients (Maximal Quotients in Boldface) :
   No Regular Quotients.
Covers (Minimal Covers in Boldface) :
   2-fold covers : {2,10,10}*2000c
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 7)( 5, 6)( 8,23)( 9,27)(10,26)(11,25)(12,24)(13,18)(14,22)(15,21)
(16,20)(17,19);;
s2 := ( 3, 8)( 4, 9)( 5,10)( 6,11)( 7,12)(13,23)(14,24)(15,25)(16,26)(17,27);;
s3 := ( 4, 7)( 5, 6)( 8, 9)(10,12)(13,15)(16,17)(18,21)(19,20)(23,27)(24,26);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3, 
s1*s2*s3*s2*s1*s2*s3*s2*s3*s2*s1*s2*s3*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(27)!(1,2);
s1 := Sym(27)!( 4, 7)( 5, 6)( 8,23)( 9,27)(10,26)(11,25)(12,24)(13,18)(14,22)
(15,21)(16,20)(17,19);
s2 := Sym(27)!( 3, 8)( 4, 9)( 5,10)( 6,11)( 7,12)(13,23)(14,24)(15,25)(16,26)
(17,27);
s3 := Sym(27)!( 4, 7)( 5, 6)( 8, 9)(10,12)(13,15)(16,17)(18,21)(19,20)(23,27)
(24,26);
poly := sub<Sym(27)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3, 
s1*s2*s3*s2*s1*s2*s3*s2*s3*s2*s1*s2*s3*s2*s1*s2 >; 
 

to this polytope