include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,10,10,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,10,10,2}*2000
if this polytope has a name.
Group : SmallGroup(2000,501)
Rank : 5
Schlafli Type : {2,10,10,2}
Number of vertices, edges, etc : 2, 25, 125, 25, 2
Order of s0s1s2s3s4 : 10
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Self-Dual
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
No Regular Quotients.
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 7)( 5, 6)( 8,23)( 9,27)(10,26)(11,25)(12,24)(13,18)(14,22)(15,21)
(16,20)(17,19);;
s2 := ( 3, 8)( 4, 9)( 5,10)( 6,11)( 7,12)(13,23)(14,24)(15,25)(16,26)(17,27);;
s3 := ( 4, 7)( 5, 6)( 8, 9)(10,12)(13,15)(16,17)(18,21)(19,20)(23,27)(24,26);;
s4 := (28,29);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4, s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3,
s1*s2*s3*s2*s1*s2*s3*s2*s3*s2*s1*s2*s3*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(29)!(1,2);
s1 := Sym(29)!( 4, 7)( 5, 6)( 8,23)( 9,27)(10,26)(11,25)(12,24)(13,18)(14,22)
(15,21)(16,20)(17,19);
s2 := Sym(29)!( 3, 8)( 4, 9)( 5,10)( 6,11)( 7,12)(13,23)(14,24)(15,25)(16,26)
(17,27);
s3 := Sym(29)!( 4, 7)( 5, 6)( 8, 9)(10,12)(13,15)(16,17)(18,21)(19,20)(23,27)
(24,26);
s4 := Sym(29)!(28,29);
poly := sub<Sym(29)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3,
s1*s2*s3*s2*s1*s2*s3*s2*s3*s2*s1*s2*s3*s2*s1*s2 >;
to this polytope