include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {20,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {20,4}*1000
if this polytope has a name.
Group : SmallGroup(1000,92)
Rank : 3
Schlafli Type : {20,4}
Number of vertices, edges, etc : 125, 250, 25
Order of s0s1s2 : 10
Order of s0s1s2s1 : 5
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Skewing Operation
Facet Of :
{20,4,2} of size 2000
Vertex Figure Of :
{2,20,4} of size 2000
Quotients (Maximal Quotients in Boldface) :
5-fold quotients : {4,4}*200
Covers (Minimal Covers in Boldface) :
2-fold covers : {20,4}*2000a
Permutation Representation (GAP) :
s0 := ( 2, 5)( 3, 4)( 6, 32)( 7, 31)( 8, 35)( 9, 34)( 10, 33)( 11, 64)
( 12, 63)( 13, 62)( 14, 61)( 15, 65)( 16, 92)( 17, 91)( 18, 95)( 19, 94)
( 20, 93)( 21,121)( 22,125)( 23,124)( 24,123)( 25,122)( 26,101)( 27,105)
( 28,104)( 29,103)( 30,102)( 36, 39)( 37, 38)( 41, 67)( 42, 66)( 43, 70)
( 44, 69)( 45, 68)( 46, 96)( 47,100)( 48, 99)( 49, 98)( 50, 97)( 51, 76)
( 52, 80)( 53, 79)( 54, 78)( 55, 77)( 56,107)( 57,106)( 58,110)( 59,109)
( 60,108)( 72, 75)( 73, 74)( 81, 82)( 83, 85)( 86,114)( 87,113)( 88,112)
( 89,111)( 90,115)(116,117)(118,120);;
s1 := ( 1, 2)( 3, 5)( 6, 95)( 7, 94)( 8, 93)( 9, 92)( 10, 91)( 11, 32)
( 12, 31)( 13, 35)( 14, 34)( 15, 33)( 16,123)( 17,122)( 18,121)( 19,125)
( 20,124)( 21, 63)( 22, 62)( 23, 61)( 24, 65)( 25, 64)( 26, 72)( 27, 71)
( 28, 75)( 29, 74)( 30, 73)( 36, 76)( 37, 80)( 38, 79)( 39, 78)( 40, 77)
( 41, 44)( 42, 43)( 46,106)( 47,110)( 48,109)( 49,108)( 50,107)( 51,120)
( 52,119)( 53,118)( 54,117)( 55,116)( 56, 57)( 58, 60)( 66, 88)( 67, 87)
( 68, 86)( 69, 90)( 70, 89)( 81,105)( 82,104)( 83,103)( 84,102)( 85,101)
( 97,100)( 98, 99)(112,115)(113,114);;
s2 := ( 1, 40)( 2, 39)( 3, 38)( 4, 37)( 5, 36)( 6, 7)( 8, 10)( 11,105)
( 12,104)( 13,103)( 14,102)( 15,101)( 16, 99)( 17, 98)( 18, 97)( 19, 96)
( 20,100)( 21, 69)( 22, 68)( 23, 67)( 24, 66)( 25, 70)( 26, 65)( 27, 64)
( 28, 63)( 29, 62)( 30, 61)( 31, 32)( 33, 35)( 41,124)( 42,123)( 43,122)
( 44,121)( 45,125)( 46, 94)( 47, 93)( 48, 92)( 49, 91)( 50, 95)( 51, 90)
( 52, 89)( 53, 88)( 54, 87)( 55, 86)( 56, 57)( 58, 60)( 71,119)( 72,118)
( 73,117)( 74,116)( 75,120)( 76,115)( 77,114)( 78,113)( 79,112)( 80,111)
( 81, 82)( 83, 85)(106,107)(108,110);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(125)!( 2, 5)( 3, 4)( 6, 32)( 7, 31)( 8, 35)( 9, 34)( 10, 33)
( 11, 64)( 12, 63)( 13, 62)( 14, 61)( 15, 65)( 16, 92)( 17, 91)( 18, 95)
( 19, 94)( 20, 93)( 21,121)( 22,125)( 23,124)( 24,123)( 25,122)( 26,101)
( 27,105)( 28,104)( 29,103)( 30,102)( 36, 39)( 37, 38)( 41, 67)( 42, 66)
( 43, 70)( 44, 69)( 45, 68)( 46, 96)( 47,100)( 48, 99)( 49, 98)( 50, 97)
( 51, 76)( 52, 80)( 53, 79)( 54, 78)( 55, 77)( 56,107)( 57,106)( 58,110)
( 59,109)( 60,108)( 72, 75)( 73, 74)( 81, 82)( 83, 85)( 86,114)( 87,113)
( 88,112)( 89,111)( 90,115)(116,117)(118,120);
s1 := Sym(125)!( 1, 2)( 3, 5)( 6, 95)( 7, 94)( 8, 93)( 9, 92)( 10, 91)
( 11, 32)( 12, 31)( 13, 35)( 14, 34)( 15, 33)( 16,123)( 17,122)( 18,121)
( 19,125)( 20,124)( 21, 63)( 22, 62)( 23, 61)( 24, 65)( 25, 64)( 26, 72)
( 27, 71)( 28, 75)( 29, 74)( 30, 73)( 36, 76)( 37, 80)( 38, 79)( 39, 78)
( 40, 77)( 41, 44)( 42, 43)( 46,106)( 47,110)( 48,109)( 49,108)( 50,107)
( 51,120)( 52,119)( 53,118)( 54,117)( 55,116)( 56, 57)( 58, 60)( 66, 88)
( 67, 87)( 68, 86)( 69, 90)( 70, 89)( 81,105)( 82,104)( 83,103)( 84,102)
( 85,101)( 97,100)( 98, 99)(112,115)(113,114);
s2 := Sym(125)!( 1, 40)( 2, 39)( 3, 38)( 4, 37)( 5, 36)( 6, 7)( 8, 10)
( 11,105)( 12,104)( 13,103)( 14,102)( 15,101)( 16, 99)( 17, 98)( 18, 97)
( 19, 96)( 20,100)( 21, 69)( 22, 68)( 23, 67)( 24, 66)( 25, 70)( 26, 65)
( 27, 64)( 28, 63)( 29, 62)( 30, 61)( 31, 32)( 33, 35)( 41,124)( 42,123)
( 43,122)( 44,121)( 45,125)( 46, 94)( 47, 93)( 48, 92)( 49, 91)( 50, 95)
( 51, 90)( 52, 89)( 53, 88)( 54, 87)( 55, 86)( 56, 57)( 58, 60)( 71,119)
( 72,118)( 73,117)( 74,116)( 75,120)( 76,115)( 77,114)( 78,113)( 79,112)
( 80,111)( 81, 82)( 83, 85)(106,107)(108,110);
poly := sub<Sym(125)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1 >;
References : None.
to this polytope