include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {20,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {20,4}*2000a
if this polytope has a name.
Group : SmallGroup(2000,482)
Rank : 3
Schlafli Type : {20,4}
Number of vertices, edges, etc : 250, 500, 50
Order of s0s1s2 : 10
Order of s0s1s2s1 : 10
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Skewing Operation
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {20,4}*1000
5-fold quotients : {4,4}*400
10-fold quotients : {4,4}*200
250-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 5)( 3, 4)( 6, 59)( 7, 58)( 8, 57)( 9, 56)( 10, 60)( 11,114)
( 12,113)( 13,112)( 14,111)( 15,115)( 16, 41)( 17, 45)( 18, 44)( 19, 43)
( 20, 42)( 21,100)( 22, 99)( 23, 98)( 24, 97)( 25, 96)( 26,101)( 27,105)
( 28,104)( 29,103)( 30,102)( 31, 34)( 32, 33)( 36, 89)( 37, 88)( 38, 87)
( 39, 86)( 40, 90)( 46, 75)( 47, 74)( 48, 73)( 49, 72)( 50, 71)( 51, 76)
( 52, 80)( 53, 79)( 54, 78)( 55, 77)( 61, 64)( 62, 63)( 66,116)( 67,120)
( 68,119)( 69,118)( 70,117)( 81,109)( 82,108)( 83,107)( 84,106)( 85,110)
( 92, 95)( 93, 94)(121,125)(122,124)(127,130)(128,129)(131,184)(132,183)
(133,182)(134,181)(135,185)(136,239)(137,238)(138,237)(139,236)(140,240)
(141,166)(142,170)(143,169)(144,168)(145,167)(146,225)(147,224)(148,223)
(149,222)(150,221)(151,226)(152,230)(153,229)(154,228)(155,227)(156,159)
(157,158)(161,214)(162,213)(163,212)(164,211)(165,215)(171,200)(172,199)
(173,198)(174,197)(175,196)(176,201)(177,205)(178,204)(179,203)(180,202)
(186,189)(187,188)(191,241)(192,245)(193,244)(194,243)(195,242)(206,234)
(207,233)(208,232)(209,231)(210,235)(217,220)(218,219)(246,250)(247,249);;
s1 := ( 1, 3)( 4, 5)( 6, 43)( 7, 42)( 8, 41)( 9, 45)( 10, 44)( 11, 56)
( 12, 60)( 13, 59)( 14, 58)( 15, 57)( 16, 97)( 17, 96)( 18,100)( 19, 99)
( 20, 98)( 21,111)( 22,115)( 23,114)( 24,113)( 25,112)( 26, 63)( 27, 62)
( 28, 61)( 29, 65)( 30, 64)( 31, 80)( 32, 79)( 33, 78)( 34, 77)( 35, 76)
( 36,120)( 37,119)( 38,118)( 39,117)( 40,116)( 46, 49)( 47, 48)( 51,122)
( 52,121)( 53,125)( 54,124)( 55,123)( 66, 68)( 69, 70)( 71, 81)( 72, 85)
( 73, 84)( 74, 83)( 75, 82)( 86, 90)( 87, 89)( 91,102)( 92,101)( 93,105)
( 94,104)( 95,103)(106,110)(107,109)(126,128)(129,130)(131,168)(132,167)
(133,166)(134,170)(135,169)(136,181)(137,185)(138,184)(139,183)(140,182)
(141,222)(142,221)(143,225)(144,224)(145,223)(146,236)(147,240)(148,239)
(149,238)(150,237)(151,188)(152,187)(153,186)(154,190)(155,189)(156,205)
(157,204)(158,203)(159,202)(160,201)(161,245)(162,244)(163,243)(164,242)
(165,241)(171,174)(172,173)(176,247)(177,246)(178,250)(179,249)(180,248)
(191,193)(194,195)(196,206)(197,210)(198,209)(199,208)(200,207)(211,215)
(212,214)(216,227)(217,226)(218,230)(219,229)(220,228)(231,235)(232,234);;
s2 := ( 1,216)( 2,220)( 3,219)( 4,218)( 5,217)( 6,162)( 7,161)( 8,165)
( 9,164)( 10,163)( 11,235)( 12,234)( 13,233)( 14,232)( 15,231)( 16,180)
( 17,179)( 18,178)( 19,177)( 20,176)( 21,147)( 22,146)( 23,150)( 24,149)
( 25,148)( 26,243)( 27,242)( 28,241)( 29,245)( 30,244)( 31,189)( 32,188)
( 33,187)( 34,186)( 35,190)( 36,132)( 37,131)( 38,135)( 39,134)( 40,133)
( 41,202)( 42,201)( 43,205)( 44,204)( 45,203)( 46,174)( 47,173)( 48,172)
( 49,171)( 50,175)( 51,145)( 52,144)( 53,143)( 54,142)( 55,141)( 56,211)
( 57,215)( 58,214)( 59,213)( 60,212)( 61,159)( 62,158)( 63,157)( 64,156)
( 65,160)( 66,229)( 67,228)( 68,227)( 69,226)( 70,230)( 71,196)( 72,200)
( 73,199)( 74,198)( 75,197)( 76,167)( 77,166)( 78,170)( 79,169)( 80,168)
( 81,238)( 82,237)( 83,236)( 84,240)( 85,239)( 86,181)( 87,185)( 88,184)
( 89,183)( 90,182)( 91,126)( 92,130)( 93,129)( 94,128)( 95,127)( 96,223)
( 97,222)( 98,221)( 99,225)(100,224)(101,194)(102,193)(103,192)(104,191)
(105,195)(106,140)(107,139)(108,138)(109,137)(110,136)(111,208)(112,207)
(113,206)(114,210)(115,209)(116,153)(117,152)(118,151)(119,155)(120,154)
(121,250)(122,249)(123,248)(124,247)(125,246);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(250)!( 2, 5)( 3, 4)( 6, 59)( 7, 58)( 8, 57)( 9, 56)( 10, 60)
( 11,114)( 12,113)( 13,112)( 14,111)( 15,115)( 16, 41)( 17, 45)( 18, 44)
( 19, 43)( 20, 42)( 21,100)( 22, 99)( 23, 98)( 24, 97)( 25, 96)( 26,101)
( 27,105)( 28,104)( 29,103)( 30,102)( 31, 34)( 32, 33)( 36, 89)( 37, 88)
( 38, 87)( 39, 86)( 40, 90)( 46, 75)( 47, 74)( 48, 73)( 49, 72)( 50, 71)
( 51, 76)( 52, 80)( 53, 79)( 54, 78)( 55, 77)( 61, 64)( 62, 63)( 66,116)
( 67,120)( 68,119)( 69,118)( 70,117)( 81,109)( 82,108)( 83,107)( 84,106)
( 85,110)( 92, 95)( 93, 94)(121,125)(122,124)(127,130)(128,129)(131,184)
(132,183)(133,182)(134,181)(135,185)(136,239)(137,238)(138,237)(139,236)
(140,240)(141,166)(142,170)(143,169)(144,168)(145,167)(146,225)(147,224)
(148,223)(149,222)(150,221)(151,226)(152,230)(153,229)(154,228)(155,227)
(156,159)(157,158)(161,214)(162,213)(163,212)(164,211)(165,215)(171,200)
(172,199)(173,198)(174,197)(175,196)(176,201)(177,205)(178,204)(179,203)
(180,202)(186,189)(187,188)(191,241)(192,245)(193,244)(194,243)(195,242)
(206,234)(207,233)(208,232)(209,231)(210,235)(217,220)(218,219)(246,250)
(247,249);
s1 := Sym(250)!( 1, 3)( 4, 5)( 6, 43)( 7, 42)( 8, 41)( 9, 45)( 10, 44)
( 11, 56)( 12, 60)( 13, 59)( 14, 58)( 15, 57)( 16, 97)( 17, 96)( 18,100)
( 19, 99)( 20, 98)( 21,111)( 22,115)( 23,114)( 24,113)( 25,112)( 26, 63)
( 27, 62)( 28, 61)( 29, 65)( 30, 64)( 31, 80)( 32, 79)( 33, 78)( 34, 77)
( 35, 76)( 36,120)( 37,119)( 38,118)( 39,117)( 40,116)( 46, 49)( 47, 48)
( 51,122)( 52,121)( 53,125)( 54,124)( 55,123)( 66, 68)( 69, 70)( 71, 81)
( 72, 85)( 73, 84)( 74, 83)( 75, 82)( 86, 90)( 87, 89)( 91,102)( 92,101)
( 93,105)( 94,104)( 95,103)(106,110)(107,109)(126,128)(129,130)(131,168)
(132,167)(133,166)(134,170)(135,169)(136,181)(137,185)(138,184)(139,183)
(140,182)(141,222)(142,221)(143,225)(144,224)(145,223)(146,236)(147,240)
(148,239)(149,238)(150,237)(151,188)(152,187)(153,186)(154,190)(155,189)
(156,205)(157,204)(158,203)(159,202)(160,201)(161,245)(162,244)(163,243)
(164,242)(165,241)(171,174)(172,173)(176,247)(177,246)(178,250)(179,249)
(180,248)(191,193)(194,195)(196,206)(197,210)(198,209)(199,208)(200,207)
(211,215)(212,214)(216,227)(217,226)(218,230)(219,229)(220,228)(231,235)
(232,234);
s2 := Sym(250)!( 1,216)( 2,220)( 3,219)( 4,218)( 5,217)( 6,162)( 7,161)
( 8,165)( 9,164)( 10,163)( 11,235)( 12,234)( 13,233)( 14,232)( 15,231)
( 16,180)( 17,179)( 18,178)( 19,177)( 20,176)( 21,147)( 22,146)( 23,150)
( 24,149)( 25,148)( 26,243)( 27,242)( 28,241)( 29,245)( 30,244)( 31,189)
( 32,188)( 33,187)( 34,186)( 35,190)( 36,132)( 37,131)( 38,135)( 39,134)
( 40,133)( 41,202)( 42,201)( 43,205)( 44,204)( 45,203)( 46,174)( 47,173)
( 48,172)( 49,171)( 50,175)( 51,145)( 52,144)( 53,143)( 54,142)( 55,141)
( 56,211)( 57,215)( 58,214)( 59,213)( 60,212)( 61,159)( 62,158)( 63,157)
( 64,156)( 65,160)( 66,229)( 67,228)( 68,227)( 69,226)( 70,230)( 71,196)
( 72,200)( 73,199)( 74,198)( 75,197)( 76,167)( 77,166)( 78,170)( 79,169)
( 80,168)( 81,238)( 82,237)( 83,236)( 84,240)( 85,239)( 86,181)( 87,185)
( 88,184)( 89,183)( 90,182)( 91,126)( 92,130)( 93,129)( 94,128)( 95,127)
( 96,223)( 97,222)( 98,221)( 99,225)(100,224)(101,194)(102,193)(103,192)
(104,191)(105,195)(106,140)(107,139)(108,138)(109,137)(110,136)(111,208)
(112,207)(113,206)(114,210)(115,209)(116,153)(117,152)(118,151)(119,155)
(120,154)(121,250)(122,249)(123,248)(124,247)(125,246);
poly := sub<Sym(250)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1 >;
References : None.
to this polytope