Polytope of Type {126,2,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {126,2,2}*1008
if this polytope has a name.
Group : SmallGroup(1008,515)
Rank : 4
Schlafli Type : {126,2,2}
Number of vertices, edges, etc : 126, 126, 2, 2
Order of s0s1s2s3 : 126
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {63,2,2}*504
   3-fold quotients : {42,2,2}*336
   6-fold quotients : {21,2,2}*168
   7-fold quotients : {18,2,2}*144
   9-fold quotients : {14,2,2}*112
   14-fold quotients : {9,2,2}*72
   18-fold quotients : {7,2,2}*56
   21-fold quotients : {6,2,2}*48
   42-fold quotients : {3,2,2}*24
   63-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2,  3)(  4, 19)(  5, 21)(  6, 20)(  7, 16)(  8, 18)(  9, 17)( 10, 13)
( 11, 15)( 12, 14)( 22, 44)( 23, 43)( 24, 45)( 25, 62)( 26, 61)( 27, 63)
( 28, 59)( 29, 58)( 30, 60)( 31, 56)( 32, 55)( 33, 57)( 34, 53)( 35, 52)
( 36, 54)( 37, 50)( 38, 49)( 39, 51)( 40, 47)( 41, 46)( 42, 48)( 65, 66)
( 67, 82)( 68, 84)( 69, 83)( 70, 79)( 71, 81)( 72, 80)( 73, 76)( 74, 78)
( 75, 77)( 85,107)( 86,106)( 87,108)( 88,125)( 89,124)( 90,126)( 91,122)
( 92,121)( 93,123)( 94,119)( 95,118)( 96,120)( 97,116)( 98,115)( 99,117)
(100,113)(101,112)(102,114)(103,110)(104,109)(105,111);;
s1 := (  1, 88)(  2, 90)(  3, 89)(  4, 85)(  5, 87)(  6, 86)(  7,103)(  8,105)
(  9,104)( 10,100)( 11,102)( 12,101)( 13, 97)( 14, 99)( 15, 98)( 16, 94)
( 17, 96)( 18, 95)( 19, 91)( 20, 93)( 21, 92)( 22, 67)( 23, 69)( 24, 68)
( 25, 64)( 26, 66)( 27, 65)( 28, 82)( 29, 84)( 30, 83)( 31, 79)( 32, 81)
( 33, 80)( 34, 76)( 35, 78)( 36, 77)( 37, 73)( 38, 75)( 39, 74)( 40, 70)
( 41, 72)( 42, 71)( 43,110)( 44,109)( 45,111)( 46,107)( 47,106)( 48,108)
( 49,125)( 50,124)( 51,126)( 52,122)( 53,121)( 54,123)( 55,119)( 56,118)
( 57,120)( 58,116)( 59,115)( 60,117)( 61,113)( 62,112)( 63,114);;
s2 := (127,128);;
s3 := (129,130);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(130)!(  2,  3)(  4, 19)(  5, 21)(  6, 20)(  7, 16)(  8, 18)(  9, 17)
( 10, 13)( 11, 15)( 12, 14)( 22, 44)( 23, 43)( 24, 45)( 25, 62)( 26, 61)
( 27, 63)( 28, 59)( 29, 58)( 30, 60)( 31, 56)( 32, 55)( 33, 57)( 34, 53)
( 35, 52)( 36, 54)( 37, 50)( 38, 49)( 39, 51)( 40, 47)( 41, 46)( 42, 48)
( 65, 66)( 67, 82)( 68, 84)( 69, 83)( 70, 79)( 71, 81)( 72, 80)( 73, 76)
( 74, 78)( 75, 77)( 85,107)( 86,106)( 87,108)( 88,125)( 89,124)( 90,126)
( 91,122)( 92,121)( 93,123)( 94,119)( 95,118)( 96,120)( 97,116)( 98,115)
( 99,117)(100,113)(101,112)(102,114)(103,110)(104,109)(105,111);
s1 := Sym(130)!(  1, 88)(  2, 90)(  3, 89)(  4, 85)(  5, 87)(  6, 86)(  7,103)
(  8,105)(  9,104)( 10,100)( 11,102)( 12,101)( 13, 97)( 14, 99)( 15, 98)
( 16, 94)( 17, 96)( 18, 95)( 19, 91)( 20, 93)( 21, 92)( 22, 67)( 23, 69)
( 24, 68)( 25, 64)( 26, 66)( 27, 65)( 28, 82)( 29, 84)( 30, 83)( 31, 79)
( 32, 81)( 33, 80)( 34, 76)( 35, 78)( 36, 77)( 37, 73)( 38, 75)( 39, 74)
( 40, 70)( 41, 72)( 42, 71)( 43,110)( 44,109)( 45,111)( 46,107)( 47,106)
( 48,108)( 49,125)( 50,124)( 51,126)( 52,122)( 53,121)( 54,123)( 55,119)
( 56,118)( 57,120)( 58,116)( 59,115)( 60,117)( 61,113)( 62,112)( 63,114);
s2 := Sym(130)!(127,128);
s3 := Sym(130)!(129,130);
poly := sub<Sym(130)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope