include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,84}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,84}*1008b
Also Known As : {6,84|2}. if this polytope has another name.
Group : SmallGroup(1008,783)
Rank : 3
Schlafli Type : {6,84}
Number of vertices, edges, etc : 6, 252, 84
Order of s0s1s2 : 84
Order of s0s1s2s1 : 2
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {6,42}*504b
3-fold quotients : {6,28}*336a, {2,84}*336
6-fold quotients : {6,14}*168, {2,42}*168
7-fold quotients : {6,12}*144a
9-fold quotients : {2,28}*112
12-fold quotients : {2,21}*84
14-fold quotients : {6,6}*72a
18-fold quotients : {2,14}*56
21-fold quotients : {2,12}*48, {6,4}*48a
36-fold quotients : {2,7}*28
42-fold quotients : {2,6}*24, {6,2}*24
63-fold quotients : {2,4}*16
84-fold quotients : {2,3}*12, {3,2}*12
126-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 22, 43)( 23, 44)( 24, 45)( 25, 46)( 26, 47)( 27, 48)( 28, 49)( 29, 50)
( 30, 51)( 31, 52)( 32, 53)( 33, 54)( 34, 55)( 35, 56)( 36, 57)( 37, 58)
( 38, 59)( 39, 60)( 40, 61)( 41, 62)( 42, 63)( 85,106)( 86,107)( 87,108)
( 88,109)( 89,110)( 90,111)( 91,112)( 92,113)( 93,114)( 94,115)( 95,116)
( 96,117)( 97,118)( 98,119)( 99,120)(100,121)(101,122)(102,123)(103,124)
(104,125)(105,126)(148,169)(149,170)(150,171)(151,172)(152,173)(153,174)
(154,175)(155,176)(156,177)(157,178)(158,179)(159,180)(160,181)(161,182)
(162,183)(163,184)(164,185)(165,186)(166,187)(167,188)(168,189)(211,232)
(212,233)(213,234)(214,235)(215,236)(216,237)(217,238)(218,239)(219,240)
(220,241)(221,242)(222,243)(223,244)(224,245)(225,246)(226,247)(227,248)
(228,249)(229,250)(230,251)(231,252);;
s1 := ( 1, 22)( 2, 28)( 3, 27)( 4, 26)( 5, 25)( 6, 24)( 7, 23)( 8, 36)
( 9, 42)( 10, 41)( 11, 40)( 12, 39)( 13, 38)( 14, 37)( 15, 29)( 16, 35)
( 17, 34)( 18, 33)( 19, 32)( 20, 31)( 21, 30)( 44, 49)( 45, 48)( 46, 47)
( 50, 57)( 51, 63)( 52, 62)( 53, 61)( 54, 60)( 55, 59)( 56, 58)( 64, 85)
( 65, 91)( 66, 90)( 67, 89)( 68, 88)( 69, 87)( 70, 86)( 71, 99)( 72,105)
( 73,104)( 74,103)( 75,102)( 76,101)( 77,100)( 78, 92)( 79, 98)( 80, 97)
( 81, 96)( 82, 95)( 83, 94)( 84, 93)(107,112)(108,111)(109,110)(113,120)
(114,126)(115,125)(116,124)(117,123)(118,122)(119,121)(127,211)(128,217)
(129,216)(130,215)(131,214)(132,213)(133,212)(134,225)(135,231)(136,230)
(137,229)(138,228)(139,227)(140,226)(141,218)(142,224)(143,223)(144,222)
(145,221)(146,220)(147,219)(148,190)(149,196)(150,195)(151,194)(152,193)
(153,192)(154,191)(155,204)(156,210)(157,209)(158,208)(159,207)(160,206)
(161,205)(162,197)(163,203)(164,202)(165,201)(166,200)(167,199)(168,198)
(169,232)(170,238)(171,237)(172,236)(173,235)(174,234)(175,233)(176,246)
(177,252)(178,251)(179,250)(180,249)(181,248)(182,247)(183,239)(184,245)
(185,244)(186,243)(187,242)(188,241)(189,240);;
s2 := ( 1,135)( 2,134)( 3,140)( 4,139)( 5,138)( 6,137)( 7,136)( 8,128)
( 9,127)( 10,133)( 11,132)( 12,131)( 13,130)( 14,129)( 15,142)( 16,141)
( 17,147)( 18,146)( 19,145)( 20,144)( 21,143)( 22,156)( 23,155)( 24,161)
( 25,160)( 26,159)( 27,158)( 28,157)( 29,149)( 30,148)( 31,154)( 32,153)
( 33,152)( 34,151)( 35,150)( 36,163)( 37,162)( 38,168)( 39,167)( 40,166)
( 41,165)( 42,164)( 43,177)( 44,176)( 45,182)( 46,181)( 47,180)( 48,179)
( 49,178)( 50,170)( 51,169)( 52,175)( 53,174)( 54,173)( 55,172)( 56,171)
( 57,184)( 58,183)( 59,189)( 60,188)( 61,187)( 62,186)( 63,185)( 64,198)
( 65,197)( 66,203)( 67,202)( 68,201)( 69,200)( 70,199)( 71,191)( 72,190)
( 73,196)( 74,195)( 75,194)( 76,193)( 77,192)( 78,205)( 79,204)( 80,210)
( 81,209)( 82,208)( 83,207)( 84,206)( 85,219)( 86,218)( 87,224)( 88,223)
( 89,222)( 90,221)( 91,220)( 92,212)( 93,211)( 94,217)( 95,216)( 96,215)
( 97,214)( 98,213)( 99,226)(100,225)(101,231)(102,230)(103,229)(104,228)
(105,227)(106,240)(107,239)(108,245)(109,244)(110,243)(111,242)(112,241)
(113,233)(114,232)(115,238)(116,237)(117,236)(118,235)(119,234)(120,247)
(121,246)(122,252)(123,251)(124,250)(125,249)(126,248);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(252)!( 22, 43)( 23, 44)( 24, 45)( 25, 46)( 26, 47)( 27, 48)( 28, 49)
( 29, 50)( 30, 51)( 31, 52)( 32, 53)( 33, 54)( 34, 55)( 35, 56)( 36, 57)
( 37, 58)( 38, 59)( 39, 60)( 40, 61)( 41, 62)( 42, 63)( 85,106)( 86,107)
( 87,108)( 88,109)( 89,110)( 90,111)( 91,112)( 92,113)( 93,114)( 94,115)
( 95,116)( 96,117)( 97,118)( 98,119)( 99,120)(100,121)(101,122)(102,123)
(103,124)(104,125)(105,126)(148,169)(149,170)(150,171)(151,172)(152,173)
(153,174)(154,175)(155,176)(156,177)(157,178)(158,179)(159,180)(160,181)
(161,182)(162,183)(163,184)(164,185)(165,186)(166,187)(167,188)(168,189)
(211,232)(212,233)(213,234)(214,235)(215,236)(216,237)(217,238)(218,239)
(219,240)(220,241)(221,242)(222,243)(223,244)(224,245)(225,246)(226,247)
(227,248)(228,249)(229,250)(230,251)(231,252);
s1 := Sym(252)!( 1, 22)( 2, 28)( 3, 27)( 4, 26)( 5, 25)( 6, 24)( 7, 23)
( 8, 36)( 9, 42)( 10, 41)( 11, 40)( 12, 39)( 13, 38)( 14, 37)( 15, 29)
( 16, 35)( 17, 34)( 18, 33)( 19, 32)( 20, 31)( 21, 30)( 44, 49)( 45, 48)
( 46, 47)( 50, 57)( 51, 63)( 52, 62)( 53, 61)( 54, 60)( 55, 59)( 56, 58)
( 64, 85)( 65, 91)( 66, 90)( 67, 89)( 68, 88)( 69, 87)( 70, 86)( 71, 99)
( 72,105)( 73,104)( 74,103)( 75,102)( 76,101)( 77,100)( 78, 92)( 79, 98)
( 80, 97)( 81, 96)( 82, 95)( 83, 94)( 84, 93)(107,112)(108,111)(109,110)
(113,120)(114,126)(115,125)(116,124)(117,123)(118,122)(119,121)(127,211)
(128,217)(129,216)(130,215)(131,214)(132,213)(133,212)(134,225)(135,231)
(136,230)(137,229)(138,228)(139,227)(140,226)(141,218)(142,224)(143,223)
(144,222)(145,221)(146,220)(147,219)(148,190)(149,196)(150,195)(151,194)
(152,193)(153,192)(154,191)(155,204)(156,210)(157,209)(158,208)(159,207)
(160,206)(161,205)(162,197)(163,203)(164,202)(165,201)(166,200)(167,199)
(168,198)(169,232)(170,238)(171,237)(172,236)(173,235)(174,234)(175,233)
(176,246)(177,252)(178,251)(179,250)(180,249)(181,248)(182,247)(183,239)
(184,245)(185,244)(186,243)(187,242)(188,241)(189,240);
s2 := Sym(252)!( 1,135)( 2,134)( 3,140)( 4,139)( 5,138)( 6,137)( 7,136)
( 8,128)( 9,127)( 10,133)( 11,132)( 12,131)( 13,130)( 14,129)( 15,142)
( 16,141)( 17,147)( 18,146)( 19,145)( 20,144)( 21,143)( 22,156)( 23,155)
( 24,161)( 25,160)( 26,159)( 27,158)( 28,157)( 29,149)( 30,148)( 31,154)
( 32,153)( 33,152)( 34,151)( 35,150)( 36,163)( 37,162)( 38,168)( 39,167)
( 40,166)( 41,165)( 42,164)( 43,177)( 44,176)( 45,182)( 46,181)( 47,180)
( 48,179)( 49,178)( 50,170)( 51,169)( 52,175)( 53,174)( 54,173)( 55,172)
( 56,171)( 57,184)( 58,183)( 59,189)( 60,188)( 61,187)( 62,186)( 63,185)
( 64,198)( 65,197)( 66,203)( 67,202)( 68,201)( 69,200)( 70,199)( 71,191)
( 72,190)( 73,196)( 74,195)( 75,194)( 76,193)( 77,192)( 78,205)( 79,204)
( 80,210)( 81,209)( 82,208)( 83,207)( 84,206)( 85,219)( 86,218)( 87,224)
( 88,223)( 89,222)( 90,221)( 91,220)( 92,212)( 93,211)( 94,217)( 95,216)
( 96,215)( 97,214)( 98,213)( 99,226)(100,225)(101,231)(102,230)(103,229)
(104,228)(105,227)(106,240)(107,239)(108,245)(109,244)(110,243)(111,242)
(112,241)(113,233)(114,232)(115,238)(116,237)(117,236)(118,235)(119,234)
(120,247)(121,246)(122,252)(123,251)(124,250)(125,249)(126,248);
poly := sub<Sym(252)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
References : None.
to this polytope