Polytope of Type {6,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,6}*72a
Also Known As : {6,6|2}. if this polytope has another name.
Group : SmallGroup(72,46)
Rank : 3
Schlafli Type : {6,6}
Number of vertices, edges, etc : 6, 18, 6
Order of s0s1s2 : 6
Order of s0s1s2s1 : 2
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
   Flat
   Self-Dual
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   {6,6,2} of size 144
   {6,6,3} of size 216
   {6,6,4} of size 288
   {6,6,3} of size 288
   {6,6,4} of size 288
   {6,6,6} of size 432
   {6,6,6} of size 432
   {6,6,6} of size 432
   {6,6,8} of size 576
   {6,6,4} of size 576
   {6,6,6} of size 576
   {6,6,9} of size 648
   {6,6,3} of size 648
   {6,6,5} of size 720
   {6,6,5} of size 720
   {6,6,10} of size 720
   {6,6,12} of size 864
   {6,6,12} of size 864
   {6,6,12} of size 864
   {6,6,3} of size 864
   {6,6,4} of size 864
   {6,6,14} of size 1008
   {6,6,15} of size 1080
   {6,6,16} of size 1152
   {6,6,4} of size 1152
   {6,6,3} of size 1152
   {6,6,4} of size 1152
   {6,6,12} of size 1152
   {6,6,8} of size 1152
   {6,6,12} of size 1152
   {6,6,6} of size 1152
   {6,6,8} of size 1152
   {6,6,18} of size 1296
   {6,6,18} of size 1296
   {6,6,6} of size 1296
   {6,6,6} of size 1296
   {6,6,6} of size 1296
   {6,6,6} of size 1296
   {6,6,20} of size 1440
   {6,6,4} of size 1440
   {6,6,5} of size 1440
   {6,6,6} of size 1440
   {6,6,10} of size 1440
   {6,6,10} of size 1440
   {6,6,5} of size 1440
   {6,6,10} of size 1440
   {6,6,10} of size 1440
   {6,6,15} of size 1440
   {6,6,21} of size 1512
   {6,6,22} of size 1584
   {6,6,24} of size 1728
   {6,6,24} of size 1728
   {6,6,24} of size 1728
   {6,6,8} of size 1728
   {6,6,6} of size 1728
   {6,6,6} of size 1728
   {6,6,12} of size 1728
   {6,6,12} of size 1728
   {6,6,3} of size 1800
   {6,6,26} of size 1872
   {6,6,9} of size 1944
   {6,6,27} of size 1944
   {6,6,9} of size 1944
   {6,6,9} of size 1944
   {6,6,9} of size 1944
   {6,6,3} of size 1944
Vertex Figure Of :
   {2,6,6} of size 144
   {3,6,6} of size 216
   {4,6,6} of size 288
   {3,6,6} of size 288
   {4,6,6} of size 288
   {6,6,6} of size 432
   {6,6,6} of size 432
   {6,6,6} of size 432
   {8,6,6} of size 576
   {4,6,6} of size 576
   {6,6,6} of size 576
   {9,6,6} of size 648
   {3,6,6} of size 648
   {5,6,6} of size 720
   {5,6,6} of size 720
   {10,6,6} of size 720
   {12,6,6} of size 864
   {12,6,6} of size 864
   {12,6,6} of size 864
   {3,6,6} of size 864
   {4,6,6} of size 864
   {14,6,6} of size 1008
   {15,6,6} of size 1080
   {16,6,6} of size 1152
   {4,6,6} of size 1152
   {3,6,6} of size 1152
   {4,6,6} of size 1152
   {12,6,6} of size 1152
   {8,6,6} of size 1152
   {12,6,6} of size 1152
   {6,6,6} of size 1152
   {8,6,6} of size 1152
   {18,6,6} of size 1296
   {18,6,6} of size 1296
   {6,6,6} of size 1296
   {6,6,6} of size 1296
   {6,6,6} of size 1296
   {6,6,6} of size 1296
   {20,6,6} of size 1440
   {4,6,6} of size 1440
   {5,6,6} of size 1440
   {6,6,6} of size 1440
   {10,6,6} of size 1440
   {10,6,6} of size 1440
   {5,6,6} of size 1440
   {10,6,6} of size 1440
   {10,6,6} of size 1440
   {15,6,6} of size 1440
   {21,6,6} of size 1512
   {22,6,6} of size 1584
   {24,6,6} of size 1728
   {24,6,6} of size 1728
   {24,6,6} of size 1728
   {8,6,6} of size 1728
   {6,6,6} of size 1728
   {6,6,6} of size 1728
   {12,6,6} of size 1728
   {12,6,6} of size 1728
   {3,6,6} of size 1800
   {26,6,6} of size 1872
   {9,6,6} of size 1944
   {27,6,6} of size 1944
   {9,6,6} of size 1944
   {9,6,6} of size 1944
   {9,6,6} of size 1944
   {3,6,6} of size 1944
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {2,6}*24, {6,2}*24
   6-fold quotients : {2,3}*12, {3,2}*12
   9-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   2-fold covers : {6,12}*144a, {12,6}*144a
   3-fold covers : {6,18}*216a, {18,6}*216a, {6,6}*216b, {6,6}*216d
   4-fold covers : {6,24}*288a, {24,6}*288a, {12,12}*288a, {6,12}*288a, {12,6}*288a
   5-fold covers : {6,30}*360b, {30,6}*360b
   6-fold covers : {6,36}*432a, {36,6}*432a, {12,18}*432a, {18,12}*432a, {6,12}*432b, {12,6}*432b, {6,12}*432g, {12,6}*432g
   7-fold covers : {6,42}*504b, {42,6}*504b
   8-fold covers : {6,48}*576a, {48,6}*576a, {12,12}*576a, {12,24}*576c, {24,12}*576c, {12,24}*576e, {24,12}*576e, {12,12}*576d, {12,12}*576f, {6,12}*576b, {12,6}*576b, {6,24}*576c, {24,6}*576c, {6,24}*576e, {24,6}*576e, {12,12}*576j, {12,12}*576k
   9-fold covers : {18,18}*648a, {6,18}*648b, {18,6}*648b, {6,54}*648a, {54,6}*648a, {6,6}*648a, {6,6}*648b, {6,18}*648f, {18,6}*648f, {6,18}*648g, {18,6}*648g, {6,18}*648i, {18,6}*648i, {6,6}*648e, {6,6}*648f, {6,6}*648g
   10-fold covers : {12,30}*720b, {30,12}*720b, {6,60}*720b, {60,6}*720b
   11-fold covers : {6,66}*792b, {66,6}*792b
   12-fold covers : {6,72}*864a, {72,6}*864a, {18,24}*864a, {24,18}*864a, {6,24}*864b, {24,6}*864b, {12,36}*864a, {36,12}*864a, {12,12}*864c, {6,24}*864f, {24,6}*864f, {12,12}*864h, {6,36}*864, {36,6}*864, {12,18}*864a, {18,12}*864a, {6,12}*864b, {12,6}*864b, {6,6}*864c, {6,12}*864c, {12,6}*864c
   13-fold covers : {6,78}*936b, {78,6}*936b
   14-fold covers : {12,42}*1008b, {42,12}*1008b, {6,84}*1008b, {84,6}*1008b
   15-fold covers : {6,90}*1080a, {90,6}*1080a, {18,30}*1080b, {30,18}*1080b, {6,30}*1080c, {30,6}*1080c, {6,30}*1080d, {30,6}*1080d
   16-fold covers : {12,24}*1152b, {24,12}*1152b, {24,24}*1152b, {24,24}*1152g, {24,24}*1152i, {24,24}*1152k, {12,48}*1152b, {48,12}*1152b, {12,48}*1152e, {48,12}*1152e, {12,24}*1152e, {24,12}*1152e, {12,12}*1152c, {6,96}*1152c, {96,6}*1152c, {6,24}*1152c, {24,6}*1152b, {12,24}*1152i, {24,12}*1152i, {12,24}*1152k, {24,12}*1152k, {6,24}*1152d, {24,6}*1152d, {6,12}*1152b, {12,6}*1152b, {6,24}*1152e, {24,6}*1152e, {12,24}*1152o, {24,12}*1152o, {12,24}*1152q, {24,12}*1152q, {6,24}*1152h, {24,6}*1152h, {6,12}*1152d, {12,6}*1152d, {12,12}*1152h, {12,12}*1152i, {12,12}*1152k, {12,12}*1152n, {12,24}*1152u, {24,12}*1152u, {12,24}*1152v, {24,12}*1152v, {12,24}*1152w, {24,12}*1152w, {12,24}*1152x, {24,12}*1152x, {12,12}*1152t, {6,6}*1152j
   17-fold covers : {6,102}*1224b, {102,6}*1224b
   18-fold covers : {18,36}*1296a, {36,18}*1296a, {12,18}*1296a, {18,12}*1296a, {6,36}*1296b, {36,6}*1296b, {12,54}*1296a, {54,12}*1296a, {6,108}*1296a, {108,6}*1296a, {6,12}*1296a, {12,6}*1296a, {6,12}*1296b, {12,6}*1296b, {12,18}*1296b, {18,12}*1296b, {6,36}*1296f, {36,6}*1296f, {12,18}*1296c, {18,12}*1296c, {6,36}*1296g, {36,6}*1296g, {6,36}*1296l, {36,6}*1296l, {12,18}*1296l, {18,12}*1296l, {6,12}*1296g, {6,12}*1296h, {12,6}*1296g, {12,6}*1296h, {6,12}*1296i, {12,6}*1296i, {12,12}*1296f, {6,12}*1296t, {12,6}*1296t
   19-fold covers : {6,114}*1368b, {114,6}*1368b
   20-fold covers : {24,30}*1440b, {30,24}*1440b, {6,120}*1440b, {120,6}*1440b, {12,60}*1440b, {60,12}*1440b, {12,30}*1440a, {30,12}*1440a, {6,60}*1440d, {60,6}*1440d
   21-fold covers : {6,126}*1512a, {126,6}*1512a, {18,42}*1512b, {42,18}*1512b, {6,42}*1512c, {42,6}*1512c, {6,42}*1512d, {42,6}*1512d
   22-fold covers : {12,66}*1584b, {66,12}*1584b, {6,132}*1584b, {132,6}*1584b
   23-fold covers : {6,138}*1656b, {138,6}*1656b
   24-fold covers : {6,144}*1728a, {144,6}*1728a, {18,48}*1728a, {48,18}*1728a, {6,48}*1728b, {48,6}*1728b, {12,36}*1728a, {36,12}*1728a, {12,12}*1728c, {12,72}*1728a, {72,12}*1728a, {24,36}*1728c, {36,24}*1728c, {12,24}*1728d, {24,12}*1728d, {12,72}*1728c, {72,12}*1728c, {24,36}*1728d, {36,24}*1728d, {12,24}*1728f, {24,12}*1728f, {6,48}*1728f, {48,6}*1728f, {12,24}*1728o, {24,12}*1728o, {12,24}*1728p, {24,12}*1728p, {12,12}*1728h, {12,36}*1728c, {36,12}*1728c, {6,36}*1728b, {36,6}*1728b, {6,72}*1728b, {72,6}*1728b, {6,72}*1728c, {72,6}*1728c, {12,36}*1728d, {36,12}*1728d, {12,36}*1728e, {36,12}*1728e, {12,18}*1728c, {18,12}*1728c, {12,12}*1728j, {12,12}*1728l, {6,12}*1728b, {12,6}*1728b, {18,24}*1728c, {24,18}*1728c, {6,24}*1728c, {24,6}*1728c, {18,24}*1728e, {24,18}*1728e, {6,24}*1728e, {24,6}*1728e, {12,36}*1728h, {36,12}*1728h, {12,12}*1728o, {12,12}*1728p, {6,12}*1728g, {6,24}*1728f, {12,6}*1728g, {24,6}*1728f, {6,6}*1728f, {6,24}*1728g, {24,6}*1728g, {12,12}*1728v, {12,12}*1728w, {6,12}*1728h, {6,12}*1728i, {12,6}*1728h, {12,6}*1728i, {12,12}*1728x, {12,12}*1728y
   25-fold covers : {6,150}*1800b, {150,6}*1800b, {6,30}*1800a, {30,6}*1800a, {6,30}*1800c, {30,6}*1800d, {30,30}*1800d, {30,30}*1800f, {30,30}*1800g
   26-fold covers : {12,78}*1872b, {78,12}*1872b, {6,156}*1872b, {156,6}*1872b
   27-fold covers : {18,18}*1944c, {6,6}*1944a, {18,18}*1944d, {6,18}*1944c, {18,6}*1944c, {6,18}*1944e, {18,6}*1944e, {18,18}*1944i, {18,18}*1944k, {18,18}*1944m, {18,54}*1944a, {54,18}*1944a, {6,54}*1944b, {54,6}*1944b, {6,18}*1944g, {18,6}*1944g, {18,18}*1944s, {18,18}*1944v, {18,18}*1944x, {18,18}*1944z, {6,18}*1944j, {18,6}*1944j, {6,54}*1944d, {54,6}*1944d, {6,54}*1944f, {54,6}*1944f, {6,162}*1944a, {162,6}*1944a, {6,18}*1944l, {18,6}*1944l, {18,18}*1944ad, {18,18}*1944ae, {18,18}*1944af, {6,18}*1944m, {6,18}*1944n, {18,6}*1944m, {18,6}*1944n, {6,18}*1944o, {18,6}*1944o, {6,6}*1944d, {6,6}*1944e, {6,6}*1944f, {6,54}*1944g, {54,6}*1944g, {6,6}*1944g, {6,6}*1944h, {6,18}*1944p, {6,18}*1944q, {18,6}*1944p, {18,6}*1944q, {6,18}*1944r, {6,18}*1944s, {18,6}*1944r, {18,6}*1944s, {6,6}*1944i, {6,6}*1944j, {6,18}*1944t, {6,18}*1944u, {18,6}*1944t, {18,6}*1944u
Permutation Representation (GAP) :
s0 := ( 5, 6)( 9,10)(11,12)(13,14)(15,16)(17,18);;
s1 := ( 1, 5)( 2, 9)( 3,13)( 4,11)( 7,17)( 8,15)(12,14)(16,18);;
s2 := ( 1, 7)( 2, 3)( 4, 8)( 5,15)( 6,16)( 9,11)(10,12)(13,17)(14,18);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(18)!( 5, 6)( 9,10)(11,12)(13,14)(15,16)(17,18);
s1 := Sym(18)!( 1, 5)( 2, 9)( 3,13)( 4,11)( 7,17)( 8,15)(12,14)(16,18);
s2 := Sym(18)!( 1, 7)( 2, 3)( 4, 8)( 5,15)( 6,16)( 9,11)(10,12)(13,17)(14,18);
poly := sub<Sym(18)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 
References : None.
to this polytope