Polytope of Type {9,18}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {9,18}*1008a
if this polytope has a name.
Group : SmallGroup(1008,880)
Rank : 3
Schlafli Type : {9,18}
Number of vertices, edges, etc : 28, 252, 56
Order of s0s1s2 : 18
Order of s0s1s2s1 : 14
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Non-Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {9,9}*504b
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (2,3)(4,7)(5,6)(8,9);;
s1 := (1,2)(3,4)(6,8)(7,9);;
s2 := ( 2, 8)( 3, 9)( 4, 6)( 5, 7)(10,11);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s2*s1*s0*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(11)!(2,3)(4,7)(5,6)(8,9);
s1 := Sym(11)!(1,2)(3,4)(6,8)(7,9);
s2 := Sym(11)!( 2, 8)( 3, 9)( 4, 6)( 5, 7)(10,11);
poly := sub<Sym(11)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s2*s1*s0*s2*s1*s2 >; 
 
References : None.
to this polytope