Polytope of Type {9}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {9}*18
Also Known As : nonagon, {9}. if this polytope has another name.
Group : SmallGroup(18,1)
Rank : 2
Schlafli Type : {9}
Number of vertices, edges, etc : 9, 9
Order of s0s1 : 9
Special Properties :
   Universal
   Spherical
   Locally Spherical
   Orientable
   Self-Dual
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {9,2} of size 36
   {9,4} of size 72
   {9,6} of size 108
   {9,4} of size 144
   {9,8} of size 288
   {9,18} of size 324
   {9,6} of size 324
   {9,6} of size 324
   {9,6} of size 324
   {9,6} of size 324
   {9,6} of size 432
   {9,12} of size 432
   {9,3} of size 504
   {9,7} of size 504
   {9,7} of size 504
   {9,7} of size 504
   {9,9} of size 504
   {9,9} of size 504
   {9,8} of size 576
   {9,3} of size 648
   {9,4} of size 648
   {9,9} of size 648
   {9,9} of size 648
   {9,12} of size 648
   {9,12} of size 648
   {9,12} of size 864
   {9,24} of size 864
   {9,10} of size 900
   {9,18} of size 972
   {9,6} of size 972
   {9,6} of size 972
   {9,18} of size 972
   {9,6} of size 972
   {9,18} of size 972
   {9,18} of size 972
   {9,18} of size 972
   {9,6} of size 972
   {9,18} of size 972
   {9,18} of size 972
   {9,18} of size 972
   {9,18} of size 972
   {9,6} of size 972
   {9,18} of size 972
   {9,3} of size 1008
   {9,6} of size 1008
   {9,6} of size 1008
   {9,7} of size 1008
   {9,7} of size 1008
   {9,7} of size 1008
   {9,9} of size 1008
   {9,9} of size 1008
   {9,14} of size 1008
   {9,14} of size 1008
   {9,14} of size 1008
   {9,14} of size 1008
   {9,14} of size 1008
   {9,14} of size 1008
   {9,18} of size 1008
   {9,18} of size 1008
   {9,18} of size 1008
   {9,18} of size 1008
   {9,10} of size 1080
   {9,8} of size 1152
   {9,4} of size 1152
   {9,9} of size 1152
   {9,18} of size 1296
   {9,36} of size 1296
   {9,6} of size 1296
   {9,6} of size 1296
   {9,12} of size 1296
   {9,6} of size 1296
   {9,12} of size 1296
   {9,12} of size 1296
   {9,6} of size 1296
   {9,12} of size 1296
   {9,4} of size 1296
   {9,6} of size 1296
   {9,4} of size 1296
   {9,6} of size 1296
   {9,12} of size 1296
   {9,12} of size 1296
   {9,18} of size 1296
   {9,18} of size 1296
   {9,6} of size 1728
   {9,24} of size 1728
   {9,12} of size 1728
   {9,14} of size 1764
   {9,4} of size 1944
   {9,9} of size 1944
   {9,9} of size 1944
   {9,9} of size 1944
   {9,9} of size 1944
   {9,12} of size 1944
   {9,12} of size 1944
   {9,12} of size 1944
Vertex Figure Of :
   {2,9} of size 36
   {4,9} of size 72
   {6,9} of size 108
   {4,9} of size 144
   {8,9} of size 288
   {18,9} of size 324
   {6,9} of size 324
   {6,9} of size 324
   {6,9} of size 324
   {6,9} of size 324
   {6,9} of size 432
   {12,9} of size 432
   {3,9} of size 504
   {7,9} of size 504
   {7,9} of size 504
   {7,9} of size 504
   {9,9} of size 504
   {9,9} of size 504
   {8,9} of size 576
   {3,9} of size 648
   {4,9} of size 648
   {9,9} of size 648
   {9,9} of size 648
   {12,9} of size 648
   {12,9} of size 648
   {12,9} of size 864
   {24,9} of size 864
   {10,9} of size 900
   {18,9} of size 972
   {6,9} of size 972
   {6,9} of size 972
   {18,9} of size 972
   {6,9} of size 972
   {18,9} of size 972
   {18,9} of size 972
   {18,9} of size 972
   {6,9} of size 972
   {18,9} of size 972
   {18,9} of size 972
   {18,9} of size 972
   {18,9} of size 972
   {6,9} of size 972
   {18,9} of size 972
   {3,9} of size 1008
   {6,9} of size 1008
   {6,9} of size 1008
   {7,9} of size 1008
   {7,9} of size 1008
   {7,9} of size 1008
   {9,9} of size 1008
   {9,9} of size 1008
   {14,9} of size 1008
   {14,9} of size 1008
   {14,9} of size 1008
   {14,9} of size 1008
   {14,9} of size 1008
   {14,9} of size 1008
   {18,9} of size 1008
   {18,9} of size 1008
   {18,9} of size 1008
   {18,9} of size 1008
   {10,9} of size 1080
   {8,9} of size 1152
   {4,9} of size 1152
   {9,9} of size 1152
   {18,9} of size 1296
   {36,9} of size 1296
   {6,9} of size 1296
   {6,9} of size 1296
   {12,9} of size 1296
   {6,9} of size 1296
   {12,9} of size 1296
   {12,9} of size 1296
   {6,9} of size 1296
   {12,9} of size 1296
   {4,9} of size 1296
   {6,9} of size 1296
   {4,9} of size 1296
   {6,9} of size 1296
   {12,9} of size 1296
   {12,9} of size 1296
   {18,9} of size 1296
   {18,9} of size 1296
   {6,9} of size 1728
   {24,9} of size 1728
   {12,9} of size 1728
   {14,9} of size 1764
   {4,9} of size 1944
   {9,9} of size 1944
   {9,9} of size 1944
   {9,9} of size 1944
   {9,9} of size 1944
   {12,9} of size 1944
   {12,9} of size 1944
   {12,9} of size 1944
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {3}*6
Covers (Minimal Covers in Boldface) :
   2-fold covers : {18}*36
   3-fold covers : {27}*54
   4-fold covers : {36}*72
   5-fold covers : {45}*90
   6-fold covers : {54}*108
   7-fold covers : {63}*126
   8-fold covers : {72}*144
   9-fold covers : {81}*162
   10-fold covers : {90}*180
   11-fold covers : {99}*198
   12-fold covers : {108}*216
   13-fold covers : {117}*234
   14-fold covers : {126}*252
   15-fold covers : {135}*270
   16-fold covers : {144}*288
   17-fold covers : {153}*306
   18-fold covers : {162}*324
   19-fold covers : {171}*342
   20-fold covers : {180}*360
   21-fold covers : {189}*378
   22-fold covers : {198}*396
   23-fold covers : {207}*414
   24-fold covers : {216}*432
   25-fold covers : {225}*450
   26-fold covers : {234}*468
   27-fold covers : {243}*486
   28-fold covers : {252}*504
   29-fold covers : {261}*522
   30-fold covers : {270}*540
   31-fold covers : {279}*558
   32-fold covers : {288}*576
   33-fold covers : {297}*594
   34-fold covers : {306}*612
   35-fold covers : {315}*630
   36-fold covers : {324}*648
   37-fold covers : {333}*666
   38-fold covers : {342}*684
   39-fold covers : {351}*702
   40-fold covers : {360}*720
   41-fold covers : {369}*738
   42-fold covers : {378}*756
   43-fold covers : {387}*774
   44-fold covers : {396}*792
   45-fold covers : {405}*810
   46-fold covers : {414}*828
   47-fold covers : {423}*846
   48-fold covers : {432}*864
   49-fold covers : {441}*882
   50-fold covers : {450}*900
   51-fold covers : {459}*918
   52-fold covers : {468}*936
   53-fold covers : {477}*954
   54-fold covers : {486}*972
   55-fold covers : {495}*990
   56-fold covers : {504}*1008
   57-fold covers : {513}*1026
   58-fold covers : {522}*1044
   59-fold covers : {531}*1062
   60-fold covers : {540}*1080
   61-fold covers : {549}*1098
   62-fold covers : {558}*1116
   63-fold covers : {567}*1134
   64-fold covers : {576}*1152
   65-fold covers : {585}*1170
   66-fold covers : {594}*1188
   67-fold covers : {603}*1206
   68-fold covers : {612}*1224
   69-fold covers : {621}*1242
   70-fold covers : {630}*1260
   71-fold covers : {639}*1278
   72-fold covers : {648}*1296
   73-fold covers : {657}*1314
   74-fold covers : {666}*1332
   75-fold covers : {675}*1350
   76-fold covers : {684}*1368
   77-fold covers : {693}*1386
   78-fold covers : {702}*1404
   79-fold covers : {711}*1422
   80-fold covers : {720}*1440
   81-fold covers : {729}*1458
   82-fold covers : {738}*1476
   83-fold covers : {747}*1494
   84-fold covers : {756}*1512
   85-fold covers : {765}*1530
   86-fold covers : {774}*1548
   87-fold covers : {783}*1566
   88-fold covers : {792}*1584
   89-fold covers : {801}*1602
   90-fold covers : {810}*1620
   91-fold covers : {819}*1638
   92-fold covers : {828}*1656
   93-fold covers : {837}*1674
   94-fold covers : {846}*1692
   95-fold covers : {855}*1710
   96-fold covers : {864}*1728
   97-fold covers : {873}*1746
   98-fold covers : {882}*1764
   99-fold covers : {891}*1782
   100-fold covers : {900}*1800
   101-fold covers : {909}*1818
   102-fold covers : {918}*1836
   103-fold covers : {927}*1854
   104-fold covers : {936}*1872
   105-fold covers : {945}*1890
   106-fold covers : {954}*1908
   107-fold covers : {963}*1926
   108-fold covers : {972}*1944
   109-fold covers : {981}*1962
   110-fold covers : {990}*1980
   111-fold covers : {999}*1998
Permutation Representation (GAP) :
s0 := (2,3)(4,5)(6,7)(8,9);;
s1 := (1,2)(3,4)(5,6)(7,8);;
poly := Group([s0,s1]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1");;
s0 := F.1;;  s1 := F.2;;  
rels := [ s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(9)!(2,3)(4,5)(6,7)(8,9);
s1 := Sym(9)!(1,2)(3,4)(5,6)(7,8);
poly := sub<Sym(9)|s0,s1>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1> := Group< s0,s1 | s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope