include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {506}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {506}*1012
Also Known As : 506-gon, {506}. if this polytope has another name.
Group : SmallGroup(1012,12)
Rank : 2
Schlafli Type : {506}
Number of vertices, edges, etc : 506, 506
Order of s0s1 : 506
Special Properties :
Universal
Spherical
Locally Spherical
Orientable
Self-Dual
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {253}*506
11-fold quotients : {46}*92
22-fold quotients : {23}*46
23-fold quotients : {22}*44
46-fold quotients : {11}*22
253-fold quotients : {2}*4
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 23)( 3, 22)( 4, 21)( 5, 20)( 6, 19)( 7, 18)( 8, 17)( 9, 16)
( 10, 15)( 11, 14)( 12, 13)( 24,231)( 25,253)( 26,252)( 27,251)( 28,250)
( 29,249)( 30,248)( 31,247)( 32,246)( 33,245)( 34,244)( 35,243)( 36,242)
( 37,241)( 38,240)( 39,239)( 40,238)( 41,237)( 42,236)( 43,235)( 44,234)
( 45,233)( 46,232)( 47,208)( 48,230)( 49,229)( 50,228)( 51,227)( 52,226)
( 53,225)( 54,224)( 55,223)( 56,222)( 57,221)( 58,220)( 59,219)( 60,218)
( 61,217)( 62,216)( 63,215)( 64,214)( 65,213)( 66,212)( 67,211)( 68,210)
( 69,209)( 70,185)( 71,207)( 72,206)( 73,205)( 74,204)( 75,203)( 76,202)
( 77,201)( 78,200)( 79,199)( 80,198)( 81,197)( 82,196)( 83,195)( 84,194)
( 85,193)( 86,192)( 87,191)( 88,190)( 89,189)( 90,188)( 91,187)( 92,186)
( 93,162)( 94,184)( 95,183)( 96,182)( 97,181)( 98,180)( 99,179)(100,178)
(101,177)(102,176)(103,175)(104,174)(105,173)(106,172)(107,171)(108,170)
(109,169)(110,168)(111,167)(112,166)(113,165)(114,164)(115,163)(116,139)
(117,161)(118,160)(119,159)(120,158)(121,157)(122,156)(123,155)(124,154)
(125,153)(126,152)(127,151)(128,150)(129,149)(130,148)(131,147)(132,146)
(133,145)(134,144)(135,143)(136,142)(137,141)(138,140)(255,276)(256,275)
(257,274)(258,273)(259,272)(260,271)(261,270)(262,269)(263,268)(264,267)
(265,266)(277,484)(278,506)(279,505)(280,504)(281,503)(282,502)(283,501)
(284,500)(285,499)(286,498)(287,497)(288,496)(289,495)(290,494)(291,493)
(292,492)(293,491)(294,490)(295,489)(296,488)(297,487)(298,486)(299,485)
(300,461)(301,483)(302,482)(303,481)(304,480)(305,479)(306,478)(307,477)
(308,476)(309,475)(310,474)(311,473)(312,472)(313,471)(314,470)(315,469)
(316,468)(317,467)(318,466)(319,465)(320,464)(321,463)(322,462)(323,438)
(324,460)(325,459)(326,458)(327,457)(328,456)(329,455)(330,454)(331,453)
(332,452)(333,451)(334,450)(335,449)(336,448)(337,447)(338,446)(339,445)
(340,444)(341,443)(342,442)(343,441)(344,440)(345,439)(346,415)(347,437)
(348,436)(349,435)(350,434)(351,433)(352,432)(353,431)(354,430)(355,429)
(356,428)(357,427)(358,426)(359,425)(360,424)(361,423)(362,422)(363,421)
(364,420)(365,419)(366,418)(367,417)(368,416)(369,392)(370,414)(371,413)
(372,412)(373,411)(374,410)(375,409)(376,408)(377,407)(378,406)(379,405)
(380,404)(381,403)(382,402)(383,401)(384,400)(385,399)(386,398)(387,397)
(388,396)(389,395)(390,394)(391,393);;
s1 := ( 1,278)( 2,277)( 3,299)( 4,298)( 5,297)( 6,296)( 7,295)( 8,294)
( 9,293)( 10,292)( 11,291)( 12,290)( 13,289)( 14,288)( 15,287)( 16,286)
( 17,285)( 18,284)( 19,283)( 20,282)( 21,281)( 22,280)( 23,279)( 24,255)
( 25,254)( 26,276)( 27,275)( 28,274)( 29,273)( 30,272)( 31,271)( 32,270)
( 33,269)( 34,268)( 35,267)( 36,266)( 37,265)( 38,264)( 39,263)( 40,262)
( 41,261)( 42,260)( 43,259)( 44,258)( 45,257)( 46,256)( 47,485)( 48,484)
( 49,506)( 50,505)( 51,504)( 52,503)( 53,502)( 54,501)( 55,500)( 56,499)
( 57,498)( 58,497)( 59,496)( 60,495)( 61,494)( 62,493)( 63,492)( 64,491)
( 65,490)( 66,489)( 67,488)( 68,487)( 69,486)( 70,462)( 71,461)( 72,483)
( 73,482)( 74,481)( 75,480)( 76,479)( 77,478)( 78,477)( 79,476)( 80,475)
( 81,474)( 82,473)( 83,472)( 84,471)( 85,470)( 86,469)( 87,468)( 88,467)
( 89,466)( 90,465)( 91,464)( 92,463)( 93,439)( 94,438)( 95,460)( 96,459)
( 97,458)( 98,457)( 99,456)(100,455)(101,454)(102,453)(103,452)(104,451)
(105,450)(106,449)(107,448)(108,447)(109,446)(110,445)(111,444)(112,443)
(113,442)(114,441)(115,440)(116,416)(117,415)(118,437)(119,436)(120,435)
(121,434)(122,433)(123,432)(124,431)(125,430)(126,429)(127,428)(128,427)
(129,426)(130,425)(131,424)(132,423)(133,422)(134,421)(135,420)(136,419)
(137,418)(138,417)(139,393)(140,392)(141,414)(142,413)(143,412)(144,411)
(145,410)(146,409)(147,408)(148,407)(149,406)(150,405)(151,404)(152,403)
(153,402)(154,401)(155,400)(156,399)(157,398)(158,397)(159,396)(160,395)
(161,394)(162,370)(163,369)(164,391)(165,390)(166,389)(167,388)(168,387)
(169,386)(170,385)(171,384)(172,383)(173,382)(174,381)(175,380)(176,379)
(177,378)(178,377)(179,376)(180,375)(181,374)(182,373)(183,372)(184,371)
(185,347)(186,346)(187,368)(188,367)(189,366)(190,365)(191,364)(192,363)
(193,362)(194,361)(195,360)(196,359)(197,358)(198,357)(199,356)(200,355)
(201,354)(202,353)(203,352)(204,351)(205,350)(206,349)(207,348)(208,324)
(209,323)(210,345)(211,344)(212,343)(213,342)(214,341)(215,340)(216,339)
(217,338)(218,337)(219,336)(220,335)(221,334)(222,333)(223,332)(224,331)
(225,330)(226,329)(227,328)(228,327)(229,326)(230,325)(231,301)(232,300)
(233,322)(234,321)(235,320)(236,319)(237,318)(238,317)(239,316)(240,315)
(241,314)(242,313)(243,312)(244,311)(245,310)(246,309)(247,308)(248,307)
(249,306)(250,305)(251,304)(252,303)(253,302);;
poly := Group([s0,s1]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1");;
s0 := F.1;; s1 := F.2;;
rels := [ s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(506)!( 2, 23)( 3, 22)( 4, 21)( 5, 20)( 6, 19)( 7, 18)( 8, 17)
( 9, 16)( 10, 15)( 11, 14)( 12, 13)( 24,231)( 25,253)( 26,252)( 27,251)
( 28,250)( 29,249)( 30,248)( 31,247)( 32,246)( 33,245)( 34,244)( 35,243)
( 36,242)( 37,241)( 38,240)( 39,239)( 40,238)( 41,237)( 42,236)( 43,235)
( 44,234)( 45,233)( 46,232)( 47,208)( 48,230)( 49,229)( 50,228)( 51,227)
( 52,226)( 53,225)( 54,224)( 55,223)( 56,222)( 57,221)( 58,220)( 59,219)
( 60,218)( 61,217)( 62,216)( 63,215)( 64,214)( 65,213)( 66,212)( 67,211)
( 68,210)( 69,209)( 70,185)( 71,207)( 72,206)( 73,205)( 74,204)( 75,203)
( 76,202)( 77,201)( 78,200)( 79,199)( 80,198)( 81,197)( 82,196)( 83,195)
( 84,194)( 85,193)( 86,192)( 87,191)( 88,190)( 89,189)( 90,188)( 91,187)
( 92,186)( 93,162)( 94,184)( 95,183)( 96,182)( 97,181)( 98,180)( 99,179)
(100,178)(101,177)(102,176)(103,175)(104,174)(105,173)(106,172)(107,171)
(108,170)(109,169)(110,168)(111,167)(112,166)(113,165)(114,164)(115,163)
(116,139)(117,161)(118,160)(119,159)(120,158)(121,157)(122,156)(123,155)
(124,154)(125,153)(126,152)(127,151)(128,150)(129,149)(130,148)(131,147)
(132,146)(133,145)(134,144)(135,143)(136,142)(137,141)(138,140)(255,276)
(256,275)(257,274)(258,273)(259,272)(260,271)(261,270)(262,269)(263,268)
(264,267)(265,266)(277,484)(278,506)(279,505)(280,504)(281,503)(282,502)
(283,501)(284,500)(285,499)(286,498)(287,497)(288,496)(289,495)(290,494)
(291,493)(292,492)(293,491)(294,490)(295,489)(296,488)(297,487)(298,486)
(299,485)(300,461)(301,483)(302,482)(303,481)(304,480)(305,479)(306,478)
(307,477)(308,476)(309,475)(310,474)(311,473)(312,472)(313,471)(314,470)
(315,469)(316,468)(317,467)(318,466)(319,465)(320,464)(321,463)(322,462)
(323,438)(324,460)(325,459)(326,458)(327,457)(328,456)(329,455)(330,454)
(331,453)(332,452)(333,451)(334,450)(335,449)(336,448)(337,447)(338,446)
(339,445)(340,444)(341,443)(342,442)(343,441)(344,440)(345,439)(346,415)
(347,437)(348,436)(349,435)(350,434)(351,433)(352,432)(353,431)(354,430)
(355,429)(356,428)(357,427)(358,426)(359,425)(360,424)(361,423)(362,422)
(363,421)(364,420)(365,419)(366,418)(367,417)(368,416)(369,392)(370,414)
(371,413)(372,412)(373,411)(374,410)(375,409)(376,408)(377,407)(378,406)
(379,405)(380,404)(381,403)(382,402)(383,401)(384,400)(385,399)(386,398)
(387,397)(388,396)(389,395)(390,394)(391,393);
s1 := Sym(506)!( 1,278)( 2,277)( 3,299)( 4,298)( 5,297)( 6,296)( 7,295)
( 8,294)( 9,293)( 10,292)( 11,291)( 12,290)( 13,289)( 14,288)( 15,287)
( 16,286)( 17,285)( 18,284)( 19,283)( 20,282)( 21,281)( 22,280)( 23,279)
( 24,255)( 25,254)( 26,276)( 27,275)( 28,274)( 29,273)( 30,272)( 31,271)
( 32,270)( 33,269)( 34,268)( 35,267)( 36,266)( 37,265)( 38,264)( 39,263)
( 40,262)( 41,261)( 42,260)( 43,259)( 44,258)( 45,257)( 46,256)( 47,485)
( 48,484)( 49,506)( 50,505)( 51,504)( 52,503)( 53,502)( 54,501)( 55,500)
( 56,499)( 57,498)( 58,497)( 59,496)( 60,495)( 61,494)( 62,493)( 63,492)
( 64,491)( 65,490)( 66,489)( 67,488)( 68,487)( 69,486)( 70,462)( 71,461)
( 72,483)( 73,482)( 74,481)( 75,480)( 76,479)( 77,478)( 78,477)( 79,476)
( 80,475)( 81,474)( 82,473)( 83,472)( 84,471)( 85,470)( 86,469)( 87,468)
( 88,467)( 89,466)( 90,465)( 91,464)( 92,463)( 93,439)( 94,438)( 95,460)
( 96,459)( 97,458)( 98,457)( 99,456)(100,455)(101,454)(102,453)(103,452)
(104,451)(105,450)(106,449)(107,448)(108,447)(109,446)(110,445)(111,444)
(112,443)(113,442)(114,441)(115,440)(116,416)(117,415)(118,437)(119,436)
(120,435)(121,434)(122,433)(123,432)(124,431)(125,430)(126,429)(127,428)
(128,427)(129,426)(130,425)(131,424)(132,423)(133,422)(134,421)(135,420)
(136,419)(137,418)(138,417)(139,393)(140,392)(141,414)(142,413)(143,412)
(144,411)(145,410)(146,409)(147,408)(148,407)(149,406)(150,405)(151,404)
(152,403)(153,402)(154,401)(155,400)(156,399)(157,398)(158,397)(159,396)
(160,395)(161,394)(162,370)(163,369)(164,391)(165,390)(166,389)(167,388)
(168,387)(169,386)(170,385)(171,384)(172,383)(173,382)(174,381)(175,380)
(176,379)(177,378)(178,377)(179,376)(180,375)(181,374)(182,373)(183,372)
(184,371)(185,347)(186,346)(187,368)(188,367)(189,366)(190,365)(191,364)
(192,363)(193,362)(194,361)(195,360)(196,359)(197,358)(198,357)(199,356)
(200,355)(201,354)(202,353)(203,352)(204,351)(205,350)(206,349)(207,348)
(208,324)(209,323)(210,345)(211,344)(212,343)(213,342)(214,341)(215,340)
(216,339)(217,338)(218,337)(219,336)(220,335)(221,334)(222,333)(223,332)
(224,331)(225,330)(226,329)(227,328)(228,327)(229,326)(230,325)(231,301)
(232,300)(233,322)(234,321)(235,320)(236,319)(237,318)(238,317)(239,316)
(240,315)(241,314)(242,313)(243,312)(244,311)(245,310)(246,309)(247,308)
(248,307)(249,306)(250,305)(251,304)(252,303)(253,302);
poly := sub<Sym(506)|s0,s1>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1> := Group< s0,s1 | s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope