Polytope of Type {514}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {514}*1028
Also Known As : 514-gon, {514}. if this polytope has another name.
Group : SmallGroup(1028,4)
Rank : 2
Schlafli Type : {514}
Number of vertices, edges, etc : 514, 514
Order of s0s1 : 514
Special Properties :
   Universal
   Spherical
   Locally Spherical
   Orientable
   Self-Dual
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {257}*514
   257-fold quotients : {2}*4
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2,257)(  3,256)(  4,255)(  5,254)(  6,253)(  7,252)(  8,251)(  9,250)
( 10,249)( 11,248)( 12,247)( 13,246)( 14,245)( 15,244)( 16,243)( 17,242)
( 18,241)( 19,240)( 20,239)( 21,238)( 22,237)( 23,236)( 24,235)( 25,234)
( 26,233)( 27,232)( 28,231)( 29,230)( 30,229)( 31,228)( 32,227)( 33,226)
( 34,225)( 35,224)( 36,223)( 37,222)( 38,221)( 39,220)( 40,219)( 41,218)
( 42,217)( 43,216)( 44,215)( 45,214)( 46,213)( 47,212)( 48,211)( 49,210)
( 50,209)( 51,208)( 52,207)( 53,206)( 54,205)( 55,204)( 56,203)( 57,202)
( 58,201)( 59,200)( 60,199)( 61,198)( 62,197)( 63,196)( 64,195)( 65,194)
( 66,193)( 67,192)( 68,191)( 69,190)( 70,189)( 71,188)( 72,187)( 73,186)
( 74,185)( 75,184)( 76,183)( 77,182)( 78,181)( 79,180)( 80,179)( 81,178)
( 82,177)( 83,176)( 84,175)( 85,174)( 86,173)( 87,172)( 88,171)( 89,170)
( 90,169)( 91,168)( 92,167)( 93,166)( 94,165)( 95,164)( 96,163)( 97,162)
( 98,161)( 99,160)(100,159)(101,158)(102,157)(103,156)(104,155)(105,154)
(106,153)(107,152)(108,151)(109,150)(110,149)(111,148)(112,147)(113,146)
(114,145)(115,144)(116,143)(117,142)(118,141)(119,140)(120,139)(121,138)
(122,137)(123,136)(124,135)(125,134)(126,133)(127,132)(128,131)(129,130)
(259,514)(260,513)(261,512)(262,511)(263,510)(264,509)(265,508)(266,507)
(267,506)(268,505)(269,504)(270,503)(271,502)(272,501)(273,500)(274,499)
(275,498)(276,497)(277,496)(278,495)(279,494)(280,493)(281,492)(282,491)
(283,490)(284,489)(285,488)(286,487)(287,486)(288,485)(289,484)(290,483)
(291,482)(292,481)(293,480)(294,479)(295,478)(296,477)(297,476)(298,475)
(299,474)(300,473)(301,472)(302,471)(303,470)(304,469)(305,468)(306,467)
(307,466)(308,465)(309,464)(310,463)(311,462)(312,461)(313,460)(314,459)
(315,458)(316,457)(317,456)(318,455)(319,454)(320,453)(321,452)(322,451)
(323,450)(324,449)(325,448)(326,447)(327,446)(328,445)(329,444)(330,443)
(331,442)(332,441)(333,440)(334,439)(335,438)(336,437)(337,436)(338,435)
(339,434)(340,433)(341,432)(342,431)(343,430)(344,429)(345,428)(346,427)
(347,426)(348,425)(349,424)(350,423)(351,422)(352,421)(353,420)(354,419)
(355,418)(356,417)(357,416)(358,415)(359,414)(360,413)(361,412)(362,411)
(363,410)(364,409)(365,408)(366,407)(367,406)(368,405)(369,404)(370,403)
(371,402)(372,401)(373,400)(374,399)(375,398)(376,397)(377,396)(378,395)
(379,394)(380,393)(381,392)(382,391)(383,390)(384,389)(385,388)(386,387);;
s1 := (  1,259)(  2,258)(  3,514)(  4,513)(  5,512)(  6,511)(  7,510)(  8,509)
(  9,508)( 10,507)( 11,506)( 12,505)( 13,504)( 14,503)( 15,502)( 16,501)
( 17,500)( 18,499)( 19,498)( 20,497)( 21,496)( 22,495)( 23,494)( 24,493)
( 25,492)( 26,491)( 27,490)( 28,489)( 29,488)( 30,487)( 31,486)( 32,485)
( 33,484)( 34,483)( 35,482)( 36,481)( 37,480)( 38,479)( 39,478)( 40,477)
( 41,476)( 42,475)( 43,474)( 44,473)( 45,472)( 46,471)( 47,470)( 48,469)
( 49,468)( 50,467)( 51,466)( 52,465)( 53,464)( 54,463)( 55,462)( 56,461)
( 57,460)( 58,459)( 59,458)( 60,457)( 61,456)( 62,455)( 63,454)( 64,453)
( 65,452)( 66,451)( 67,450)( 68,449)( 69,448)( 70,447)( 71,446)( 72,445)
( 73,444)( 74,443)( 75,442)( 76,441)( 77,440)( 78,439)( 79,438)( 80,437)
( 81,436)( 82,435)( 83,434)( 84,433)( 85,432)( 86,431)( 87,430)( 88,429)
( 89,428)( 90,427)( 91,426)( 92,425)( 93,424)( 94,423)( 95,422)( 96,421)
( 97,420)( 98,419)( 99,418)(100,417)(101,416)(102,415)(103,414)(104,413)
(105,412)(106,411)(107,410)(108,409)(109,408)(110,407)(111,406)(112,405)
(113,404)(114,403)(115,402)(116,401)(117,400)(118,399)(119,398)(120,397)
(121,396)(122,395)(123,394)(124,393)(125,392)(126,391)(127,390)(128,389)
(129,388)(130,387)(131,386)(132,385)(133,384)(134,383)(135,382)(136,381)
(137,380)(138,379)(139,378)(140,377)(141,376)(142,375)(143,374)(144,373)
(145,372)(146,371)(147,370)(148,369)(149,368)(150,367)(151,366)(152,365)
(153,364)(154,363)(155,362)(156,361)(157,360)(158,359)(159,358)(160,357)
(161,356)(162,355)(163,354)(164,353)(165,352)(166,351)(167,350)(168,349)
(169,348)(170,347)(171,346)(172,345)(173,344)(174,343)(175,342)(176,341)
(177,340)(178,339)(179,338)(180,337)(181,336)(182,335)(183,334)(184,333)
(185,332)(186,331)(187,330)(188,329)(189,328)(190,327)(191,326)(192,325)
(193,324)(194,323)(195,322)(196,321)(197,320)(198,319)(199,318)(200,317)
(201,316)(202,315)(203,314)(204,313)(205,312)(206,311)(207,310)(208,309)
(209,308)(210,307)(211,306)(212,305)(213,304)(214,303)(215,302)(216,301)
(217,300)(218,299)(219,298)(220,297)(221,296)(222,295)(223,294)(224,293)
(225,292)(226,291)(227,290)(228,289)(229,288)(230,287)(231,286)(232,285)
(233,284)(234,283)(235,282)(236,281)(237,280)(238,279)(239,278)(240,277)
(241,276)(242,275)(243,274)(244,273)(245,272)(246,271)(247,270)(248,269)
(249,268)(250,267)(251,266)(252,265)(253,264)(254,263)(255,262)(256,261)
(257,260);;
poly := Group([s0,s1]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1");;
s0 := F.1;;  s1 := F.2;;  
rels := [ s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(514)!(  2,257)(  3,256)(  4,255)(  5,254)(  6,253)(  7,252)(  8,251)
(  9,250)( 10,249)( 11,248)( 12,247)( 13,246)( 14,245)( 15,244)( 16,243)
( 17,242)( 18,241)( 19,240)( 20,239)( 21,238)( 22,237)( 23,236)( 24,235)
( 25,234)( 26,233)( 27,232)( 28,231)( 29,230)( 30,229)( 31,228)( 32,227)
( 33,226)( 34,225)( 35,224)( 36,223)( 37,222)( 38,221)( 39,220)( 40,219)
( 41,218)( 42,217)( 43,216)( 44,215)( 45,214)( 46,213)( 47,212)( 48,211)
( 49,210)( 50,209)( 51,208)( 52,207)( 53,206)( 54,205)( 55,204)( 56,203)
( 57,202)( 58,201)( 59,200)( 60,199)( 61,198)( 62,197)( 63,196)( 64,195)
( 65,194)( 66,193)( 67,192)( 68,191)( 69,190)( 70,189)( 71,188)( 72,187)
( 73,186)( 74,185)( 75,184)( 76,183)( 77,182)( 78,181)( 79,180)( 80,179)
( 81,178)( 82,177)( 83,176)( 84,175)( 85,174)( 86,173)( 87,172)( 88,171)
( 89,170)( 90,169)( 91,168)( 92,167)( 93,166)( 94,165)( 95,164)( 96,163)
( 97,162)( 98,161)( 99,160)(100,159)(101,158)(102,157)(103,156)(104,155)
(105,154)(106,153)(107,152)(108,151)(109,150)(110,149)(111,148)(112,147)
(113,146)(114,145)(115,144)(116,143)(117,142)(118,141)(119,140)(120,139)
(121,138)(122,137)(123,136)(124,135)(125,134)(126,133)(127,132)(128,131)
(129,130)(259,514)(260,513)(261,512)(262,511)(263,510)(264,509)(265,508)
(266,507)(267,506)(268,505)(269,504)(270,503)(271,502)(272,501)(273,500)
(274,499)(275,498)(276,497)(277,496)(278,495)(279,494)(280,493)(281,492)
(282,491)(283,490)(284,489)(285,488)(286,487)(287,486)(288,485)(289,484)
(290,483)(291,482)(292,481)(293,480)(294,479)(295,478)(296,477)(297,476)
(298,475)(299,474)(300,473)(301,472)(302,471)(303,470)(304,469)(305,468)
(306,467)(307,466)(308,465)(309,464)(310,463)(311,462)(312,461)(313,460)
(314,459)(315,458)(316,457)(317,456)(318,455)(319,454)(320,453)(321,452)
(322,451)(323,450)(324,449)(325,448)(326,447)(327,446)(328,445)(329,444)
(330,443)(331,442)(332,441)(333,440)(334,439)(335,438)(336,437)(337,436)
(338,435)(339,434)(340,433)(341,432)(342,431)(343,430)(344,429)(345,428)
(346,427)(347,426)(348,425)(349,424)(350,423)(351,422)(352,421)(353,420)
(354,419)(355,418)(356,417)(357,416)(358,415)(359,414)(360,413)(361,412)
(362,411)(363,410)(364,409)(365,408)(366,407)(367,406)(368,405)(369,404)
(370,403)(371,402)(372,401)(373,400)(374,399)(375,398)(376,397)(377,396)
(378,395)(379,394)(380,393)(381,392)(382,391)(383,390)(384,389)(385,388)
(386,387);
s1 := Sym(514)!(  1,259)(  2,258)(  3,514)(  4,513)(  5,512)(  6,511)(  7,510)
(  8,509)(  9,508)( 10,507)( 11,506)( 12,505)( 13,504)( 14,503)( 15,502)
( 16,501)( 17,500)( 18,499)( 19,498)( 20,497)( 21,496)( 22,495)( 23,494)
( 24,493)( 25,492)( 26,491)( 27,490)( 28,489)( 29,488)( 30,487)( 31,486)
( 32,485)( 33,484)( 34,483)( 35,482)( 36,481)( 37,480)( 38,479)( 39,478)
( 40,477)( 41,476)( 42,475)( 43,474)( 44,473)( 45,472)( 46,471)( 47,470)
( 48,469)( 49,468)( 50,467)( 51,466)( 52,465)( 53,464)( 54,463)( 55,462)
( 56,461)( 57,460)( 58,459)( 59,458)( 60,457)( 61,456)( 62,455)( 63,454)
( 64,453)( 65,452)( 66,451)( 67,450)( 68,449)( 69,448)( 70,447)( 71,446)
( 72,445)( 73,444)( 74,443)( 75,442)( 76,441)( 77,440)( 78,439)( 79,438)
( 80,437)( 81,436)( 82,435)( 83,434)( 84,433)( 85,432)( 86,431)( 87,430)
( 88,429)( 89,428)( 90,427)( 91,426)( 92,425)( 93,424)( 94,423)( 95,422)
( 96,421)( 97,420)( 98,419)( 99,418)(100,417)(101,416)(102,415)(103,414)
(104,413)(105,412)(106,411)(107,410)(108,409)(109,408)(110,407)(111,406)
(112,405)(113,404)(114,403)(115,402)(116,401)(117,400)(118,399)(119,398)
(120,397)(121,396)(122,395)(123,394)(124,393)(125,392)(126,391)(127,390)
(128,389)(129,388)(130,387)(131,386)(132,385)(133,384)(134,383)(135,382)
(136,381)(137,380)(138,379)(139,378)(140,377)(141,376)(142,375)(143,374)
(144,373)(145,372)(146,371)(147,370)(148,369)(149,368)(150,367)(151,366)
(152,365)(153,364)(154,363)(155,362)(156,361)(157,360)(158,359)(159,358)
(160,357)(161,356)(162,355)(163,354)(164,353)(165,352)(166,351)(167,350)
(168,349)(169,348)(170,347)(171,346)(172,345)(173,344)(174,343)(175,342)
(176,341)(177,340)(178,339)(179,338)(180,337)(181,336)(182,335)(183,334)
(184,333)(185,332)(186,331)(187,330)(188,329)(189,328)(190,327)(191,326)
(192,325)(193,324)(194,323)(195,322)(196,321)(197,320)(198,319)(199,318)
(200,317)(201,316)(202,315)(203,314)(204,313)(205,312)(206,311)(207,310)
(208,309)(209,308)(210,307)(211,306)(212,305)(213,304)(214,303)(215,302)
(216,301)(217,300)(218,299)(219,298)(220,297)(221,296)(222,295)(223,294)
(224,293)(225,292)(226,291)(227,290)(228,289)(229,288)(230,287)(231,286)
(232,285)(233,284)(234,283)(235,282)(236,281)(237,280)(238,279)(239,278)
(240,277)(241,276)(242,275)(243,274)(244,273)(245,272)(246,271)(247,270)
(248,269)(249,268)(250,267)(251,266)(252,265)(253,264)(254,263)(255,262)
(256,261)(257,260);
poly := sub<Sym(514)|s0,s1>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1> := Group< s0,s1 | s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope