Polytope of Type {526}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {526}*1052
Also Known As : 526-gon, {526}. if this polytope has another name.
Group : SmallGroup(1052,3)
Rank : 2
Schlafli Type : {526}
Number of vertices, edges, etc : 526, 526
Order of s0s1 : 526
Special Properties :
   Universal
   Spherical
   Locally Spherical
   Orientable
   Self-Dual
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {263}*526
   263-fold quotients : {2}*4
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2,263)(  3,262)(  4,261)(  5,260)(  6,259)(  7,258)(  8,257)(  9,256)
( 10,255)( 11,254)( 12,253)( 13,252)( 14,251)( 15,250)( 16,249)( 17,248)
( 18,247)( 19,246)( 20,245)( 21,244)( 22,243)( 23,242)( 24,241)( 25,240)
( 26,239)( 27,238)( 28,237)( 29,236)( 30,235)( 31,234)( 32,233)( 33,232)
( 34,231)( 35,230)( 36,229)( 37,228)( 38,227)( 39,226)( 40,225)( 41,224)
( 42,223)( 43,222)( 44,221)( 45,220)( 46,219)( 47,218)( 48,217)( 49,216)
( 50,215)( 51,214)( 52,213)( 53,212)( 54,211)( 55,210)( 56,209)( 57,208)
( 58,207)( 59,206)( 60,205)( 61,204)( 62,203)( 63,202)( 64,201)( 65,200)
( 66,199)( 67,198)( 68,197)( 69,196)( 70,195)( 71,194)( 72,193)( 73,192)
( 74,191)( 75,190)( 76,189)( 77,188)( 78,187)( 79,186)( 80,185)( 81,184)
( 82,183)( 83,182)( 84,181)( 85,180)( 86,179)( 87,178)( 88,177)( 89,176)
( 90,175)( 91,174)( 92,173)( 93,172)( 94,171)( 95,170)( 96,169)( 97,168)
( 98,167)( 99,166)(100,165)(101,164)(102,163)(103,162)(104,161)(105,160)
(106,159)(107,158)(108,157)(109,156)(110,155)(111,154)(112,153)(113,152)
(114,151)(115,150)(116,149)(117,148)(118,147)(119,146)(120,145)(121,144)
(122,143)(123,142)(124,141)(125,140)(126,139)(127,138)(128,137)(129,136)
(130,135)(131,134)(132,133)(265,526)(266,525)(267,524)(268,523)(269,522)
(270,521)(271,520)(272,519)(273,518)(274,517)(275,516)(276,515)(277,514)
(278,513)(279,512)(280,511)(281,510)(282,509)(283,508)(284,507)(285,506)
(286,505)(287,504)(288,503)(289,502)(290,501)(291,500)(292,499)(293,498)
(294,497)(295,496)(296,495)(297,494)(298,493)(299,492)(300,491)(301,490)
(302,489)(303,488)(304,487)(305,486)(306,485)(307,484)(308,483)(309,482)
(310,481)(311,480)(312,479)(313,478)(314,477)(315,476)(316,475)(317,474)
(318,473)(319,472)(320,471)(321,470)(322,469)(323,468)(324,467)(325,466)
(326,465)(327,464)(328,463)(329,462)(330,461)(331,460)(332,459)(333,458)
(334,457)(335,456)(336,455)(337,454)(338,453)(339,452)(340,451)(341,450)
(342,449)(343,448)(344,447)(345,446)(346,445)(347,444)(348,443)(349,442)
(350,441)(351,440)(352,439)(353,438)(354,437)(355,436)(356,435)(357,434)
(358,433)(359,432)(360,431)(361,430)(362,429)(363,428)(364,427)(365,426)
(366,425)(367,424)(368,423)(369,422)(370,421)(371,420)(372,419)(373,418)
(374,417)(375,416)(376,415)(377,414)(378,413)(379,412)(380,411)(381,410)
(382,409)(383,408)(384,407)(385,406)(386,405)(387,404)(388,403)(389,402)
(390,401)(391,400)(392,399)(393,398)(394,397)(395,396);;
s1 := (  1,265)(  2,264)(  3,526)(  4,525)(  5,524)(  6,523)(  7,522)(  8,521)
(  9,520)( 10,519)( 11,518)( 12,517)( 13,516)( 14,515)( 15,514)( 16,513)
( 17,512)( 18,511)( 19,510)( 20,509)( 21,508)( 22,507)( 23,506)( 24,505)
( 25,504)( 26,503)( 27,502)( 28,501)( 29,500)( 30,499)( 31,498)( 32,497)
( 33,496)( 34,495)( 35,494)( 36,493)( 37,492)( 38,491)( 39,490)( 40,489)
( 41,488)( 42,487)( 43,486)( 44,485)( 45,484)( 46,483)( 47,482)( 48,481)
( 49,480)( 50,479)( 51,478)( 52,477)( 53,476)( 54,475)( 55,474)( 56,473)
( 57,472)( 58,471)( 59,470)( 60,469)( 61,468)( 62,467)( 63,466)( 64,465)
( 65,464)( 66,463)( 67,462)( 68,461)( 69,460)( 70,459)( 71,458)( 72,457)
( 73,456)( 74,455)( 75,454)( 76,453)( 77,452)( 78,451)( 79,450)( 80,449)
( 81,448)( 82,447)( 83,446)( 84,445)( 85,444)( 86,443)( 87,442)( 88,441)
( 89,440)( 90,439)( 91,438)( 92,437)( 93,436)( 94,435)( 95,434)( 96,433)
( 97,432)( 98,431)( 99,430)(100,429)(101,428)(102,427)(103,426)(104,425)
(105,424)(106,423)(107,422)(108,421)(109,420)(110,419)(111,418)(112,417)
(113,416)(114,415)(115,414)(116,413)(117,412)(118,411)(119,410)(120,409)
(121,408)(122,407)(123,406)(124,405)(125,404)(126,403)(127,402)(128,401)
(129,400)(130,399)(131,398)(132,397)(133,396)(134,395)(135,394)(136,393)
(137,392)(138,391)(139,390)(140,389)(141,388)(142,387)(143,386)(144,385)
(145,384)(146,383)(147,382)(148,381)(149,380)(150,379)(151,378)(152,377)
(153,376)(154,375)(155,374)(156,373)(157,372)(158,371)(159,370)(160,369)
(161,368)(162,367)(163,366)(164,365)(165,364)(166,363)(167,362)(168,361)
(169,360)(170,359)(171,358)(172,357)(173,356)(174,355)(175,354)(176,353)
(177,352)(178,351)(179,350)(180,349)(181,348)(182,347)(183,346)(184,345)
(185,344)(186,343)(187,342)(188,341)(189,340)(190,339)(191,338)(192,337)
(193,336)(194,335)(195,334)(196,333)(197,332)(198,331)(199,330)(200,329)
(201,328)(202,327)(203,326)(204,325)(205,324)(206,323)(207,322)(208,321)
(209,320)(210,319)(211,318)(212,317)(213,316)(214,315)(215,314)(216,313)
(217,312)(218,311)(219,310)(220,309)(221,308)(222,307)(223,306)(224,305)
(225,304)(226,303)(227,302)(228,301)(229,300)(230,299)(231,298)(232,297)
(233,296)(234,295)(235,294)(236,293)(237,292)(238,291)(239,290)(240,289)
(241,288)(242,287)(243,286)(244,285)(245,284)(246,283)(247,282)(248,281)
(249,280)(250,279)(251,278)(252,277)(253,276)(254,275)(255,274)(256,273)
(257,272)(258,271)(259,270)(260,269)(261,268)(262,267)(263,266);;
poly := Group([s0,s1]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1");;
s0 := F.1;;  s1 := F.2;;  
rels := [ s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(526)!(  2,263)(  3,262)(  4,261)(  5,260)(  6,259)(  7,258)(  8,257)
(  9,256)( 10,255)( 11,254)( 12,253)( 13,252)( 14,251)( 15,250)( 16,249)
( 17,248)( 18,247)( 19,246)( 20,245)( 21,244)( 22,243)( 23,242)( 24,241)
( 25,240)( 26,239)( 27,238)( 28,237)( 29,236)( 30,235)( 31,234)( 32,233)
( 33,232)( 34,231)( 35,230)( 36,229)( 37,228)( 38,227)( 39,226)( 40,225)
( 41,224)( 42,223)( 43,222)( 44,221)( 45,220)( 46,219)( 47,218)( 48,217)
( 49,216)( 50,215)( 51,214)( 52,213)( 53,212)( 54,211)( 55,210)( 56,209)
( 57,208)( 58,207)( 59,206)( 60,205)( 61,204)( 62,203)( 63,202)( 64,201)
( 65,200)( 66,199)( 67,198)( 68,197)( 69,196)( 70,195)( 71,194)( 72,193)
( 73,192)( 74,191)( 75,190)( 76,189)( 77,188)( 78,187)( 79,186)( 80,185)
( 81,184)( 82,183)( 83,182)( 84,181)( 85,180)( 86,179)( 87,178)( 88,177)
( 89,176)( 90,175)( 91,174)( 92,173)( 93,172)( 94,171)( 95,170)( 96,169)
( 97,168)( 98,167)( 99,166)(100,165)(101,164)(102,163)(103,162)(104,161)
(105,160)(106,159)(107,158)(108,157)(109,156)(110,155)(111,154)(112,153)
(113,152)(114,151)(115,150)(116,149)(117,148)(118,147)(119,146)(120,145)
(121,144)(122,143)(123,142)(124,141)(125,140)(126,139)(127,138)(128,137)
(129,136)(130,135)(131,134)(132,133)(265,526)(266,525)(267,524)(268,523)
(269,522)(270,521)(271,520)(272,519)(273,518)(274,517)(275,516)(276,515)
(277,514)(278,513)(279,512)(280,511)(281,510)(282,509)(283,508)(284,507)
(285,506)(286,505)(287,504)(288,503)(289,502)(290,501)(291,500)(292,499)
(293,498)(294,497)(295,496)(296,495)(297,494)(298,493)(299,492)(300,491)
(301,490)(302,489)(303,488)(304,487)(305,486)(306,485)(307,484)(308,483)
(309,482)(310,481)(311,480)(312,479)(313,478)(314,477)(315,476)(316,475)
(317,474)(318,473)(319,472)(320,471)(321,470)(322,469)(323,468)(324,467)
(325,466)(326,465)(327,464)(328,463)(329,462)(330,461)(331,460)(332,459)
(333,458)(334,457)(335,456)(336,455)(337,454)(338,453)(339,452)(340,451)
(341,450)(342,449)(343,448)(344,447)(345,446)(346,445)(347,444)(348,443)
(349,442)(350,441)(351,440)(352,439)(353,438)(354,437)(355,436)(356,435)
(357,434)(358,433)(359,432)(360,431)(361,430)(362,429)(363,428)(364,427)
(365,426)(366,425)(367,424)(368,423)(369,422)(370,421)(371,420)(372,419)
(373,418)(374,417)(375,416)(376,415)(377,414)(378,413)(379,412)(380,411)
(381,410)(382,409)(383,408)(384,407)(385,406)(386,405)(387,404)(388,403)
(389,402)(390,401)(391,400)(392,399)(393,398)(394,397)(395,396);
s1 := Sym(526)!(  1,265)(  2,264)(  3,526)(  4,525)(  5,524)(  6,523)(  7,522)
(  8,521)(  9,520)( 10,519)( 11,518)( 12,517)( 13,516)( 14,515)( 15,514)
( 16,513)( 17,512)( 18,511)( 19,510)( 20,509)( 21,508)( 22,507)( 23,506)
( 24,505)( 25,504)( 26,503)( 27,502)( 28,501)( 29,500)( 30,499)( 31,498)
( 32,497)( 33,496)( 34,495)( 35,494)( 36,493)( 37,492)( 38,491)( 39,490)
( 40,489)( 41,488)( 42,487)( 43,486)( 44,485)( 45,484)( 46,483)( 47,482)
( 48,481)( 49,480)( 50,479)( 51,478)( 52,477)( 53,476)( 54,475)( 55,474)
( 56,473)( 57,472)( 58,471)( 59,470)( 60,469)( 61,468)( 62,467)( 63,466)
( 64,465)( 65,464)( 66,463)( 67,462)( 68,461)( 69,460)( 70,459)( 71,458)
( 72,457)( 73,456)( 74,455)( 75,454)( 76,453)( 77,452)( 78,451)( 79,450)
( 80,449)( 81,448)( 82,447)( 83,446)( 84,445)( 85,444)( 86,443)( 87,442)
( 88,441)( 89,440)( 90,439)( 91,438)( 92,437)( 93,436)( 94,435)( 95,434)
( 96,433)( 97,432)( 98,431)( 99,430)(100,429)(101,428)(102,427)(103,426)
(104,425)(105,424)(106,423)(107,422)(108,421)(109,420)(110,419)(111,418)
(112,417)(113,416)(114,415)(115,414)(116,413)(117,412)(118,411)(119,410)
(120,409)(121,408)(122,407)(123,406)(124,405)(125,404)(126,403)(127,402)
(128,401)(129,400)(130,399)(131,398)(132,397)(133,396)(134,395)(135,394)
(136,393)(137,392)(138,391)(139,390)(140,389)(141,388)(142,387)(143,386)
(144,385)(145,384)(146,383)(147,382)(148,381)(149,380)(150,379)(151,378)
(152,377)(153,376)(154,375)(155,374)(156,373)(157,372)(158,371)(159,370)
(160,369)(161,368)(162,367)(163,366)(164,365)(165,364)(166,363)(167,362)
(168,361)(169,360)(170,359)(171,358)(172,357)(173,356)(174,355)(175,354)
(176,353)(177,352)(178,351)(179,350)(180,349)(181,348)(182,347)(183,346)
(184,345)(185,344)(186,343)(187,342)(188,341)(189,340)(190,339)(191,338)
(192,337)(193,336)(194,335)(195,334)(196,333)(197,332)(198,331)(199,330)
(200,329)(201,328)(202,327)(203,326)(204,325)(205,324)(206,323)(207,322)
(208,321)(209,320)(210,319)(211,318)(212,317)(213,316)(214,315)(215,314)
(216,313)(217,312)(218,311)(219,310)(220,309)(221,308)(222,307)(223,306)
(224,305)(225,304)(226,303)(227,302)(228,301)(229,300)(230,299)(231,298)
(232,297)(233,296)(234,295)(235,294)(236,293)(237,292)(238,291)(239,290)
(240,289)(241,288)(242,287)(243,286)(244,285)(245,284)(246,283)(247,282)
(248,281)(249,280)(250,279)(251,278)(252,277)(253,276)(254,275)(255,274)
(256,273)(257,272)(258,271)(259,270)(260,269)(261,268)(262,267)(263,266);
poly := sub<Sym(526)|s0,s1>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1> := Group< s0,s1 | s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope