Polytope of Type {2,33,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,33,6}*1056
if this polytope has a name.
Group : SmallGroup(1056,1015)
Rank : 4
Schlafli Type : {2,33,6}
Number of vertices, edges, etc : 2, 44, 132, 8
Order of s0s1s2s3 : 44
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   11-fold quotients : {2,3,6}*96
   12-fold quotients : {2,11,2}*88
   22-fold quotients : {2,3,3}*48
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 5)( 7,43)( 8,45)( 9,44)(10,46)(11,39)(12,41)(13,40)(14,42)(15,35)
(16,37)(17,36)(18,38)(19,31)(20,33)(21,32)(22,34)(23,27)(24,29)(25,28)
(26,30);;
s2 := ( 3, 7)( 4, 8)( 5,10)( 6, 9)(11,43)(12,44)(13,46)(14,45)(15,39)(16,40)
(17,42)(18,41)(19,35)(20,36)(21,38)(22,37)(23,31)(24,32)(25,34)(26,33)
(29,30);;
s3 := ( 3, 6)( 7,10)(11,14)(15,18)(19,22)(23,26)(27,30)(31,34)(35,38)(39,42)
(43,46);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s3*s1*s2*s3*s2*s3*s1*s2*s3*s2*s3*s1*s2*s3*s2*s3*s1*s2*s3*s2, 
s1*s2*s1*s2*s1*s2*s3*s1*s2*s1*s2*s1*s3*s2*s1*s2*s1*s3*s2*s1*s2*s1*s3*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(46)!(1,2);
s1 := Sym(46)!( 4, 5)( 7,43)( 8,45)( 9,44)(10,46)(11,39)(12,41)(13,40)(14,42)
(15,35)(16,37)(17,36)(18,38)(19,31)(20,33)(21,32)(22,34)(23,27)(24,29)(25,28)
(26,30);
s2 := Sym(46)!( 3, 7)( 4, 8)( 5,10)( 6, 9)(11,43)(12,44)(13,46)(14,45)(15,39)
(16,40)(17,42)(18,41)(19,35)(20,36)(21,38)(22,37)(23,31)(24,32)(25,34)(26,33)
(29,30);
s3 := Sym(46)!( 3, 6)( 7,10)(11,14)(15,18)(19,22)(23,26)(27,30)(31,34)(35,38)
(39,42)(43,46);
poly := sub<Sym(46)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s3*s1*s2*s3*s2*s3*s1*s2*s3*s2*s3*s1*s2*s3*s2*s3*s1*s2*s3*s2, 
s1*s2*s1*s2*s1*s2*s3*s1*s2*s1*s2*s1*s3*s2*s1*s2*s1*s3*s2*s1*s2*s1*s3*s2*s1*s2 >; 
 

to this polytope