include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,11,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,11,2}*88
if this polytope has a name.
Group : SmallGroup(88,11)
Rank : 4
Schlafli Type : {2,11,2}
Number of vertices, edges, etc : 2, 11, 11, 2
Order of s0s1s2s3 : 22
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Self-Dual
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{2,11,2,2} of size 176
{2,11,2,3} of size 264
{2,11,2,4} of size 352
{2,11,2,5} of size 440
{2,11,2,6} of size 528
{2,11,2,7} of size 616
{2,11,2,8} of size 704
{2,11,2,9} of size 792
{2,11,2,10} of size 880
{2,11,2,11} of size 968
{2,11,2,12} of size 1056
{2,11,2,13} of size 1144
{2,11,2,14} of size 1232
{2,11,2,15} of size 1320
{2,11,2,16} of size 1408
{2,11,2,17} of size 1496
{2,11,2,18} of size 1584
{2,11,2,19} of size 1672
{2,11,2,20} of size 1760
{2,11,2,21} of size 1848
{2,11,2,22} of size 1936
Vertex Figure Of :
{2,2,11,2} of size 176
{3,2,11,2} of size 264
{4,2,11,2} of size 352
{5,2,11,2} of size 440
{6,2,11,2} of size 528
{7,2,11,2} of size 616
{8,2,11,2} of size 704
{9,2,11,2} of size 792
{10,2,11,2} of size 880
{11,2,11,2} of size 968
{12,2,11,2} of size 1056
{13,2,11,2} of size 1144
{14,2,11,2} of size 1232
{15,2,11,2} of size 1320
{16,2,11,2} of size 1408
{17,2,11,2} of size 1496
{18,2,11,2} of size 1584
{19,2,11,2} of size 1672
{20,2,11,2} of size 1760
{21,2,11,2} of size 1848
{22,2,11,2} of size 1936
Quotients (Maximal Quotients in Boldface) :
No Regular Quotients.
Covers (Minimal Covers in Boldface) :
2-fold covers : {2,22,2}*176
3-fold covers : {2,33,2}*264
4-fold covers : {2,44,2}*352, {2,22,4}*352, {4,22,2}*352
5-fold covers : {2,55,2}*440
6-fold covers : {2,22,6}*528, {6,22,2}*528, {2,66,2}*528
7-fold covers : {2,77,2}*616
8-fold covers : {2,44,4}*704, {4,44,2}*704, {4,22,4}*704, {2,88,2}*704, {2,22,8}*704, {8,22,2}*704
9-fold covers : {2,99,2}*792, {2,33,6}*792, {6,33,2}*792
10-fold covers : {2,22,10}*880, {10,22,2}*880, {2,110,2}*880
11-fold covers : {2,121,2}*968, {2,11,22}*968, {22,11,2}*968
12-fold covers : {2,22,12}*1056, {12,22,2}*1056, {2,44,6}*1056a, {6,44,2}*1056a, {4,22,6}*1056, {6,22,4}*1056, {2,132,2}*1056, {2,66,4}*1056a, {4,66,2}*1056a, {2,33,6}*1056, {6,33,2}*1056, {2,33,4}*1056, {4,33,2}*1056
13-fold covers : {2,143,2}*1144
14-fold covers : {2,22,14}*1232, {14,22,2}*1232, {2,154,2}*1232
15-fold covers : {2,165,2}*1320
16-fold covers : {4,44,4}*1408, {2,44,8}*1408a, {8,44,2}*1408a, {2,88,4}*1408a, {4,88,2}*1408a, {2,44,8}*1408b, {8,44,2}*1408b, {2,88,4}*1408b, {4,88,2}*1408b, {2,44,4}*1408, {4,44,2}*1408, {4,22,8}*1408, {8,22,4}*1408, {2,22,16}*1408, {16,22,2}*1408, {2,176,2}*1408
17-fold covers : {2,187,2}*1496
18-fold covers : {2,22,18}*1584, {18,22,2}*1584, {2,198,2}*1584, {6,22,6}*1584, {2,66,6}*1584a, {6,66,2}*1584a, {2,66,6}*1584b, {2,66,6}*1584c, {6,66,2}*1584b, {6,66,2}*1584c
19-fold covers : {2,209,2}*1672
20-fold covers : {2,22,20}*1760, {20,22,2}*1760, {2,44,10}*1760, {10,44,2}*1760, {4,22,10}*1760, {10,22,4}*1760, {2,220,2}*1760, {2,110,4}*1760, {4,110,2}*1760
21-fold covers : {2,231,2}*1848
22-fold covers : {2,242,2}*1936, {2,22,22}*1936a, {2,22,22}*1936c, {22,22,2}*1936a, {22,22,2}*1936b
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 5)( 6, 7)( 8, 9)(10,11)(12,13);;
s2 := ( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12);;
s3 := (14,15);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(15)!(1,2);
s1 := Sym(15)!( 4, 5)( 6, 7)( 8, 9)(10,11)(12,13);
s2 := Sym(15)!( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12);
s3 := Sym(15)!(14,15);
poly := sub<Sym(15)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope