include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {536}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {536}*1072
Also Known As : 536-gon, {536}. if this polytope has another name.
Group : SmallGroup(1072,26)
Rank : 2
Schlafli Type : {536}
Number of vertices, edges, etc : 536, 536
Order of s0s1 : 536
Special Properties :
Universal
Spherical
Locally Spherical
Orientable
Self-Dual
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {268}*536
4-fold quotients : {134}*268
8-fold quotients : {67}*134
67-fold quotients : {8}*16
134-fold quotients : {4}*8
268-fold quotients : {2}*4
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 67)( 3, 66)( 4, 65)( 5, 64)( 6, 63)( 7, 62)( 8, 61)( 9, 60)
( 10, 59)( 11, 58)( 12, 57)( 13, 56)( 14, 55)( 15, 54)( 16, 53)( 17, 52)
( 18, 51)( 19, 50)( 20, 49)( 21, 48)( 22, 47)( 23, 46)( 24, 45)( 25, 44)
( 26, 43)( 27, 42)( 28, 41)( 29, 40)( 30, 39)( 31, 38)( 32, 37)( 33, 36)
( 34, 35)( 69,134)( 70,133)( 71,132)( 72,131)( 73,130)( 74,129)( 75,128)
( 76,127)( 77,126)( 78,125)( 79,124)( 80,123)( 81,122)( 82,121)( 83,120)
( 84,119)( 85,118)( 86,117)( 87,116)( 88,115)( 89,114)( 90,113)( 91,112)
( 92,111)( 93,110)( 94,109)( 95,108)( 96,107)( 97,106)( 98,105)( 99,104)
(100,103)(101,102)(135,202)(136,268)(137,267)(138,266)(139,265)(140,264)
(141,263)(142,262)(143,261)(144,260)(145,259)(146,258)(147,257)(148,256)
(149,255)(150,254)(151,253)(152,252)(153,251)(154,250)(155,249)(156,248)
(157,247)(158,246)(159,245)(160,244)(161,243)(162,242)(163,241)(164,240)
(165,239)(166,238)(167,237)(168,236)(169,235)(170,234)(171,233)(172,232)
(173,231)(174,230)(175,229)(176,228)(177,227)(178,226)(179,225)(180,224)
(181,223)(182,222)(183,221)(184,220)(185,219)(186,218)(187,217)(188,216)
(189,215)(190,214)(191,213)(192,212)(193,211)(194,210)(195,209)(196,208)
(197,207)(198,206)(199,205)(200,204)(201,203)(269,403)(270,469)(271,468)
(272,467)(273,466)(274,465)(275,464)(276,463)(277,462)(278,461)(279,460)
(280,459)(281,458)(282,457)(283,456)(284,455)(285,454)(286,453)(287,452)
(288,451)(289,450)(290,449)(291,448)(292,447)(293,446)(294,445)(295,444)
(296,443)(297,442)(298,441)(299,440)(300,439)(301,438)(302,437)(303,436)
(304,435)(305,434)(306,433)(307,432)(308,431)(309,430)(310,429)(311,428)
(312,427)(313,426)(314,425)(315,424)(316,423)(317,422)(318,421)(319,420)
(320,419)(321,418)(322,417)(323,416)(324,415)(325,414)(326,413)(327,412)
(328,411)(329,410)(330,409)(331,408)(332,407)(333,406)(334,405)(335,404)
(336,470)(337,536)(338,535)(339,534)(340,533)(341,532)(342,531)(343,530)
(344,529)(345,528)(346,527)(347,526)(348,525)(349,524)(350,523)(351,522)
(352,521)(353,520)(354,519)(355,518)(356,517)(357,516)(358,515)(359,514)
(360,513)(361,512)(362,511)(363,510)(364,509)(365,508)(366,507)(367,506)
(368,505)(369,504)(370,503)(371,502)(372,501)(373,500)(374,499)(375,498)
(376,497)(377,496)(378,495)(379,494)(380,493)(381,492)(382,491)(383,490)
(384,489)(385,488)(386,487)(387,486)(388,485)(389,484)(390,483)(391,482)
(392,481)(393,480)(394,479)(395,478)(396,477)(397,476)(398,475)(399,474)
(400,473)(401,472)(402,471);;
s1 := ( 1,270)( 2,269)( 3,335)( 4,334)( 5,333)( 6,332)( 7,331)( 8,330)
( 9,329)( 10,328)( 11,327)( 12,326)( 13,325)( 14,324)( 15,323)( 16,322)
( 17,321)( 18,320)( 19,319)( 20,318)( 21,317)( 22,316)( 23,315)( 24,314)
( 25,313)( 26,312)( 27,311)( 28,310)( 29,309)( 30,308)( 31,307)( 32,306)
( 33,305)( 34,304)( 35,303)( 36,302)( 37,301)( 38,300)( 39,299)( 40,298)
( 41,297)( 42,296)( 43,295)( 44,294)( 45,293)( 46,292)( 47,291)( 48,290)
( 49,289)( 50,288)( 51,287)( 52,286)( 53,285)( 54,284)( 55,283)( 56,282)
( 57,281)( 58,280)( 59,279)( 60,278)( 61,277)( 62,276)( 63,275)( 64,274)
( 65,273)( 66,272)( 67,271)( 68,337)( 69,336)( 70,402)( 71,401)( 72,400)
( 73,399)( 74,398)( 75,397)( 76,396)( 77,395)( 78,394)( 79,393)( 80,392)
( 81,391)( 82,390)( 83,389)( 84,388)( 85,387)( 86,386)( 87,385)( 88,384)
( 89,383)( 90,382)( 91,381)( 92,380)( 93,379)( 94,378)( 95,377)( 96,376)
( 97,375)( 98,374)( 99,373)(100,372)(101,371)(102,370)(103,369)(104,368)
(105,367)(106,366)(107,365)(108,364)(109,363)(110,362)(111,361)(112,360)
(113,359)(114,358)(115,357)(116,356)(117,355)(118,354)(119,353)(120,352)
(121,351)(122,350)(123,349)(124,348)(125,347)(126,346)(127,345)(128,344)
(129,343)(130,342)(131,341)(132,340)(133,339)(134,338)(135,471)(136,470)
(137,536)(138,535)(139,534)(140,533)(141,532)(142,531)(143,530)(144,529)
(145,528)(146,527)(147,526)(148,525)(149,524)(150,523)(151,522)(152,521)
(153,520)(154,519)(155,518)(156,517)(157,516)(158,515)(159,514)(160,513)
(161,512)(162,511)(163,510)(164,509)(165,508)(166,507)(167,506)(168,505)
(169,504)(170,503)(171,502)(172,501)(173,500)(174,499)(175,498)(176,497)
(177,496)(178,495)(179,494)(180,493)(181,492)(182,491)(183,490)(184,489)
(185,488)(186,487)(187,486)(188,485)(189,484)(190,483)(191,482)(192,481)
(193,480)(194,479)(195,478)(196,477)(197,476)(198,475)(199,474)(200,473)
(201,472)(202,404)(203,403)(204,469)(205,468)(206,467)(207,466)(208,465)
(209,464)(210,463)(211,462)(212,461)(213,460)(214,459)(215,458)(216,457)
(217,456)(218,455)(219,454)(220,453)(221,452)(222,451)(223,450)(224,449)
(225,448)(226,447)(227,446)(228,445)(229,444)(230,443)(231,442)(232,441)
(233,440)(234,439)(235,438)(236,437)(237,436)(238,435)(239,434)(240,433)
(241,432)(242,431)(243,430)(244,429)(245,428)(246,427)(247,426)(248,425)
(249,424)(250,423)(251,422)(252,421)(253,420)(254,419)(255,418)(256,417)
(257,416)(258,415)(259,414)(260,413)(261,412)(262,411)(263,410)(264,409)
(265,408)(266,407)(267,406)(268,405);;
poly := Group([s0,s1]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1");;
s0 := F.1;; s1 := F.2;;
rels := [ s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(536)!( 2, 67)( 3, 66)( 4, 65)( 5, 64)( 6, 63)( 7, 62)( 8, 61)
( 9, 60)( 10, 59)( 11, 58)( 12, 57)( 13, 56)( 14, 55)( 15, 54)( 16, 53)
( 17, 52)( 18, 51)( 19, 50)( 20, 49)( 21, 48)( 22, 47)( 23, 46)( 24, 45)
( 25, 44)( 26, 43)( 27, 42)( 28, 41)( 29, 40)( 30, 39)( 31, 38)( 32, 37)
( 33, 36)( 34, 35)( 69,134)( 70,133)( 71,132)( 72,131)( 73,130)( 74,129)
( 75,128)( 76,127)( 77,126)( 78,125)( 79,124)( 80,123)( 81,122)( 82,121)
( 83,120)( 84,119)( 85,118)( 86,117)( 87,116)( 88,115)( 89,114)( 90,113)
( 91,112)( 92,111)( 93,110)( 94,109)( 95,108)( 96,107)( 97,106)( 98,105)
( 99,104)(100,103)(101,102)(135,202)(136,268)(137,267)(138,266)(139,265)
(140,264)(141,263)(142,262)(143,261)(144,260)(145,259)(146,258)(147,257)
(148,256)(149,255)(150,254)(151,253)(152,252)(153,251)(154,250)(155,249)
(156,248)(157,247)(158,246)(159,245)(160,244)(161,243)(162,242)(163,241)
(164,240)(165,239)(166,238)(167,237)(168,236)(169,235)(170,234)(171,233)
(172,232)(173,231)(174,230)(175,229)(176,228)(177,227)(178,226)(179,225)
(180,224)(181,223)(182,222)(183,221)(184,220)(185,219)(186,218)(187,217)
(188,216)(189,215)(190,214)(191,213)(192,212)(193,211)(194,210)(195,209)
(196,208)(197,207)(198,206)(199,205)(200,204)(201,203)(269,403)(270,469)
(271,468)(272,467)(273,466)(274,465)(275,464)(276,463)(277,462)(278,461)
(279,460)(280,459)(281,458)(282,457)(283,456)(284,455)(285,454)(286,453)
(287,452)(288,451)(289,450)(290,449)(291,448)(292,447)(293,446)(294,445)
(295,444)(296,443)(297,442)(298,441)(299,440)(300,439)(301,438)(302,437)
(303,436)(304,435)(305,434)(306,433)(307,432)(308,431)(309,430)(310,429)
(311,428)(312,427)(313,426)(314,425)(315,424)(316,423)(317,422)(318,421)
(319,420)(320,419)(321,418)(322,417)(323,416)(324,415)(325,414)(326,413)
(327,412)(328,411)(329,410)(330,409)(331,408)(332,407)(333,406)(334,405)
(335,404)(336,470)(337,536)(338,535)(339,534)(340,533)(341,532)(342,531)
(343,530)(344,529)(345,528)(346,527)(347,526)(348,525)(349,524)(350,523)
(351,522)(352,521)(353,520)(354,519)(355,518)(356,517)(357,516)(358,515)
(359,514)(360,513)(361,512)(362,511)(363,510)(364,509)(365,508)(366,507)
(367,506)(368,505)(369,504)(370,503)(371,502)(372,501)(373,500)(374,499)
(375,498)(376,497)(377,496)(378,495)(379,494)(380,493)(381,492)(382,491)
(383,490)(384,489)(385,488)(386,487)(387,486)(388,485)(389,484)(390,483)
(391,482)(392,481)(393,480)(394,479)(395,478)(396,477)(397,476)(398,475)
(399,474)(400,473)(401,472)(402,471);
s1 := Sym(536)!( 1,270)( 2,269)( 3,335)( 4,334)( 5,333)( 6,332)( 7,331)
( 8,330)( 9,329)( 10,328)( 11,327)( 12,326)( 13,325)( 14,324)( 15,323)
( 16,322)( 17,321)( 18,320)( 19,319)( 20,318)( 21,317)( 22,316)( 23,315)
( 24,314)( 25,313)( 26,312)( 27,311)( 28,310)( 29,309)( 30,308)( 31,307)
( 32,306)( 33,305)( 34,304)( 35,303)( 36,302)( 37,301)( 38,300)( 39,299)
( 40,298)( 41,297)( 42,296)( 43,295)( 44,294)( 45,293)( 46,292)( 47,291)
( 48,290)( 49,289)( 50,288)( 51,287)( 52,286)( 53,285)( 54,284)( 55,283)
( 56,282)( 57,281)( 58,280)( 59,279)( 60,278)( 61,277)( 62,276)( 63,275)
( 64,274)( 65,273)( 66,272)( 67,271)( 68,337)( 69,336)( 70,402)( 71,401)
( 72,400)( 73,399)( 74,398)( 75,397)( 76,396)( 77,395)( 78,394)( 79,393)
( 80,392)( 81,391)( 82,390)( 83,389)( 84,388)( 85,387)( 86,386)( 87,385)
( 88,384)( 89,383)( 90,382)( 91,381)( 92,380)( 93,379)( 94,378)( 95,377)
( 96,376)( 97,375)( 98,374)( 99,373)(100,372)(101,371)(102,370)(103,369)
(104,368)(105,367)(106,366)(107,365)(108,364)(109,363)(110,362)(111,361)
(112,360)(113,359)(114,358)(115,357)(116,356)(117,355)(118,354)(119,353)
(120,352)(121,351)(122,350)(123,349)(124,348)(125,347)(126,346)(127,345)
(128,344)(129,343)(130,342)(131,341)(132,340)(133,339)(134,338)(135,471)
(136,470)(137,536)(138,535)(139,534)(140,533)(141,532)(142,531)(143,530)
(144,529)(145,528)(146,527)(147,526)(148,525)(149,524)(150,523)(151,522)
(152,521)(153,520)(154,519)(155,518)(156,517)(157,516)(158,515)(159,514)
(160,513)(161,512)(162,511)(163,510)(164,509)(165,508)(166,507)(167,506)
(168,505)(169,504)(170,503)(171,502)(172,501)(173,500)(174,499)(175,498)
(176,497)(177,496)(178,495)(179,494)(180,493)(181,492)(182,491)(183,490)
(184,489)(185,488)(186,487)(187,486)(188,485)(189,484)(190,483)(191,482)
(192,481)(193,480)(194,479)(195,478)(196,477)(197,476)(198,475)(199,474)
(200,473)(201,472)(202,404)(203,403)(204,469)(205,468)(206,467)(207,466)
(208,465)(209,464)(210,463)(211,462)(212,461)(213,460)(214,459)(215,458)
(216,457)(217,456)(218,455)(219,454)(220,453)(221,452)(222,451)(223,450)
(224,449)(225,448)(226,447)(227,446)(228,445)(229,444)(230,443)(231,442)
(232,441)(233,440)(234,439)(235,438)(236,437)(237,436)(238,435)(239,434)
(240,433)(241,432)(242,431)(243,430)(244,429)(245,428)(246,427)(247,426)
(248,425)(249,424)(250,423)(251,422)(252,421)(253,420)(254,419)(255,418)
(256,417)(257,416)(258,415)(259,414)(260,413)(261,412)(262,411)(263,410)
(264,409)(265,408)(266,407)(267,406)(268,405);
poly := sub<Sym(536)|s0,s1>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1> := Group< s0,s1 | s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope