Polytope of Type {538}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {538}*1076
Also Known As : 538-gon, {538}. if this polytope has another name.
Group : SmallGroup(1076,4)
Rank : 2
Schlafli Type : {538}
Number of vertices, edges, etc : 538, 538
Order of s0s1 : 538
Special Properties :
   Universal
   Spherical
   Locally Spherical
   Orientable
   Self-Dual
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {269}*538
   269-fold quotients : {2}*4
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2,269)(  3,268)(  4,267)(  5,266)(  6,265)(  7,264)(  8,263)(  9,262)
( 10,261)( 11,260)( 12,259)( 13,258)( 14,257)( 15,256)( 16,255)( 17,254)
( 18,253)( 19,252)( 20,251)( 21,250)( 22,249)( 23,248)( 24,247)( 25,246)
( 26,245)( 27,244)( 28,243)( 29,242)( 30,241)( 31,240)( 32,239)( 33,238)
( 34,237)( 35,236)( 36,235)( 37,234)( 38,233)( 39,232)( 40,231)( 41,230)
( 42,229)( 43,228)( 44,227)( 45,226)( 46,225)( 47,224)( 48,223)( 49,222)
( 50,221)( 51,220)( 52,219)( 53,218)( 54,217)( 55,216)( 56,215)( 57,214)
( 58,213)( 59,212)( 60,211)( 61,210)( 62,209)( 63,208)( 64,207)( 65,206)
( 66,205)( 67,204)( 68,203)( 69,202)( 70,201)( 71,200)( 72,199)( 73,198)
( 74,197)( 75,196)( 76,195)( 77,194)( 78,193)( 79,192)( 80,191)( 81,190)
( 82,189)( 83,188)( 84,187)( 85,186)( 86,185)( 87,184)( 88,183)( 89,182)
( 90,181)( 91,180)( 92,179)( 93,178)( 94,177)( 95,176)( 96,175)( 97,174)
( 98,173)( 99,172)(100,171)(101,170)(102,169)(103,168)(104,167)(105,166)
(106,165)(107,164)(108,163)(109,162)(110,161)(111,160)(112,159)(113,158)
(114,157)(115,156)(116,155)(117,154)(118,153)(119,152)(120,151)(121,150)
(122,149)(123,148)(124,147)(125,146)(126,145)(127,144)(128,143)(129,142)
(130,141)(131,140)(132,139)(133,138)(134,137)(135,136)(271,538)(272,537)
(273,536)(274,535)(275,534)(276,533)(277,532)(278,531)(279,530)(280,529)
(281,528)(282,527)(283,526)(284,525)(285,524)(286,523)(287,522)(288,521)
(289,520)(290,519)(291,518)(292,517)(293,516)(294,515)(295,514)(296,513)
(297,512)(298,511)(299,510)(300,509)(301,508)(302,507)(303,506)(304,505)
(305,504)(306,503)(307,502)(308,501)(309,500)(310,499)(311,498)(312,497)
(313,496)(314,495)(315,494)(316,493)(317,492)(318,491)(319,490)(320,489)
(321,488)(322,487)(323,486)(324,485)(325,484)(326,483)(327,482)(328,481)
(329,480)(330,479)(331,478)(332,477)(333,476)(334,475)(335,474)(336,473)
(337,472)(338,471)(339,470)(340,469)(341,468)(342,467)(343,466)(344,465)
(345,464)(346,463)(347,462)(348,461)(349,460)(350,459)(351,458)(352,457)
(353,456)(354,455)(355,454)(356,453)(357,452)(358,451)(359,450)(360,449)
(361,448)(362,447)(363,446)(364,445)(365,444)(366,443)(367,442)(368,441)
(369,440)(370,439)(371,438)(372,437)(373,436)(374,435)(375,434)(376,433)
(377,432)(378,431)(379,430)(380,429)(381,428)(382,427)(383,426)(384,425)
(385,424)(386,423)(387,422)(388,421)(389,420)(390,419)(391,418)(392,417)
(393,416)(394,415)(395,414)(396,413)(397,412)(398,411)(399,410)(400,409)
(401,408)(402,407)(403,406)(404,405);;
s1 := (  1,271)(  2,270)(  3,538)(  4,537)(  5,536)(  6,535)(  7,534)(  8,533)
(  9,532)( 10,531)( 11,530)( 12,529)( 13,528)( 14,527)( 15,526)( 16,525)
( 17,524)( 18,523)( 19,522)( 20,521)( 21,520)( 22,519)( 23,518)( 24,517)
( 25,516)( 26,515)( 27,514)( 28,513)( 29,512)( 30,511)( 31,510)( 32,509)
( 33,508)( 34,507)( 35,506)( 36,505)( 37,504)( 38,503)( 39,502)( 40,501)
( 41,500)( 42,499)( 43,498)( 44,497)( 45,496)( 46,495)( 47,494)( 48,493)
( 49,492)( 50,491)( 51,490)( 52,489)( 53,488)( 54,487)( 55,486)( 56,485)
( 57,484)( 58,483)( 59,482)( 60,481)( 61,480)( 62,479)( 63,478)( 64,477)
( 65,476)( 66,475)( 67,474)( 68,473)( 69,472)( 70,471)( 71,470)( 72,469)
( 73,468)( 74,467)( 75,466)( 76,465)( 77,464)( 78,463)( 79,462)( 80,461)
( 81,460)( 82,459)( 83,458)( 84,457)( 85,456)( 86,455)( 87,454)( 88,453)
( 89,452)( 90,451)( 91,450)( 92,449)( 93,448)( 94,447)( 95,446)( 96,445)
( 97,444)( 98,443)( 99,442)(100,441)(101,440)(102,439)(103,438)(104,437)
(105,436)(106,435)(107,434)(108,433)(109,432)(110,431)(111,430)(112,429)
(113,428)(114,427)(115,426)(116,425)(117,424)(118,423)(119,422)(120,421)
(121,420)(122,419)(123,418)(124,417)(125,416)(126,415)(127,414)(128,413)
(129,412)(130,411)(131,410)(132,409)(133,408)(134,407)(135,406)(136,405)
(137,404)(138,403)(139,402)(140,401)(141,400)(142,399)(143,398)(144,397)
(145,396)(146,395)(147,394)(148,393)(149,392)(150,391)(151,390)(152,389)
(153,388)(154,387)(155,386)(156,385)(157,384)(158,383)(159,382)(160,381)
(161,380)(162,379)(163,378)(164,377)(165,376)(166,375)(167,374)(168,373)
(169,372)(170,371)(171,370)(172,369)(173,368)(174,367)(175,366)(176,365)
(177,364)(178,363)(179,362)(180,361)(181,360)(182,359)(183,358)(184,357)
(185,356)(186,355)(187,354)(188,353)(189,352)(190,351)(191,350)(192,349)
(193,348)(194,347)(195,346)(196,345)(197,344)(198,343)(199,342)(200,341)
(201,340)(202,339)(203,338)(204,337)(205,336)(206,335)(207,334)(208,333)
(209,332)(210,331)(211,330)(212,329)(213,328)(214,327)(215,326)(216,325)
(217,324)(218,323)(219,322)(220,321)(221,320)(222,319)(223,318)(224,317)
(225,316)(226,315)(227,314)(228,313)(229,312)(230,311)(231,310)(232,309)
(233,308)(234,307)(235,306)(236,305)(237,304)(238,303)(239,302)(240,301)
(241,300)(242,299)(243,298)(244,297)(245,296)(246,295)(247,294)(248,293)
(249,292)(250,291)(251,290)(252,289)(253,288)(254,287)(255,286)(256,285)
(257,284)(258,283)(259,282)(260,281)(261,280)(262,279)(263,278)(264,277)
(265,276)(266,275)(267,274)(268,273)(269,272);;
poly := Group([s0,s1]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1");;
s0 := F.1;;  s1 := F.2;;  
rels := [ s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(538)!(  2,269)(  3,268)(  4,267)(  5,266)(  6,265)(  7,264)(  8,263)
(  9,262)( 10,261)( 11,260)( 12,259)( 13,258)( 14,257)( 15,256)( 16,255)
( 17,254)( 18,253)( 19,252)( 20,251)( 21,250)( 22,249)( 23,248)( 24,247)
( 25,246)( 26,245)( 27,244)( 28,243)( 29,242)( 30,241)( 31,240)( 32,239)
( 33,238)( 34,237)( 35,236)( 36,235)( 37,234)( 38,233)( 39,232)( 40,231)
( 41,230)( 42,229)( 43,228)( 44,227)( 45,226)( 46,225)( 47,224)( 48,223)
( 49,222)( 50,221)( 51,220)( 52,219)( 53,218)( 54,217)( 55,216)( 56,215)
( 57,214)( 58,213)( 59,212)( 60,211)( 61,210)( 62,209)( 63,208)( 64,207)
( 65,206)( 66,205)( 67,204)( 68,203)( 69,202)( 70,201)( 71,200)( 72,199)
( 73,198)( 74,197)( 75,196)( 76,195)( 77,194)( 78,193)( 79,192)( 80,191)
( 81,190)( 82,189)( 83,188)( 84,187)( 85,186)( 86,185)( 87,184)( 88,183)
( 89,182)( 90,181)( 91,180)( 92,179)( 93,178)( 94,177)( 95,176)( 96,175)
( 97,174)( 98,173)( 99,172)(100,171)(101,170)(102,169)(103,168)(104,167)
(105,166)(106,165)(107,164)(108,163)(109,162)(110,161)(111,160)(112,159)
(113,158)(114,157)(115,156)(116,155)(117,154)(118,153)(119,152)(120,151)
(121,150)(122,149)(123,148)(124,147)(125,146)(126,145)(127,144)(128,143)
(129,142)(130,141)(131,140)(132,139)(133,138)(134,137)(135,136)(271,538)
(272,537)(273,536)(274,535)(275,534)(276,533)(277,532)(278,531)(279,530)
(280,529)(281,528)(282,527)(283,526)(284,525)(285,524)(286,523)(287,522)
(288,521)(289,520)(290,519)(291,518)(292,517)(293,516)(294,515)(295,514)
(296,513)(297,512)(298,511)(299,510)(300,509)(301,508)(302,507)(303,506)
(304,505)(305,504)(306,503)(307,502)(308,501)(309,500)(310,499)(311,498)
(312,497)(313,496)(314,495)(315,494)(316,493)(317,492)(318,491)(319,490)
(320,489)(321,488)(322,487)(323,486)(324,485)(325,484)(326,483)(327,482)
(328,481)(329,480)(330,479)(331,478)(332,477)(333,476)(334,475)(335,474)
(336,473)(337,472)(338,471)(339,470)(340,469)(341,468)(342,467)(343,466)
(344,465)(345,464)(346,463)(347,462)(348,461)(349,460)(350,459)(351,458)
(352,457)(353,456)(354,455)(355,454)(356,453)(357,452)(358,451)(359,450)
(360,449)(361,448)(362,447)(363,446)(364,445)(365,444)(366,443)(367,442)
(368,441)(369,440)(370,439)(371,438)(372,437)(373,436)(374,435)(375,434)
(376,433)(377,432)(378,431)(379,430)(380,429)(381,428)(382,427)(383,426)
(384,425)(385,424)(386,423)(387,422)(388,421)(389,420)(390,419)(391,418)
(392,417)(393,416)(394,415)(395,414)(396,413)(397,412)(398,411)(399,410)
(400,409)(401,408)(402,407)(403,406)(404,405);
s1 := Sym(538)!(  1,271)(  2,270)(  3,538)(  4,537)(  5,536)(  6,535)(  7,534)
(  8,533)(  9,532)( 10,531)( 11,530)( 12,529)( 13,528)( 14,527)( 15,526)
( 16,525)( 17,524)( 18,523)( 19,522)( 20,521)( 21,520)( 22,519)( 23,518)
( 24,517)( 25,516)( 26,515)( 27,514)( 28,513)( 29,512)( 30,511)( 31,510)
( 32,509)( 33,508)( 34,507)( 35,506)( 36,505)( 37,504)( 38,503)( 39,502)
( 40,501)( 41,500)( 42,499)( 43,498)( 44,497)( 45,496)( 46,495)( 47,494)
( 48,493)( 49,492)( 50,491)( 51,490)( 52,489)( 53,488)( 54,487)( 55,486)
( 56,485)( 57,484)( 58,483)( 59,482)( 60,481)( 61,480)( 62,479)( 63,478)
( 64,477)( 65,476)( 66,475)( 67,474)( 68,473)( 69,472)( 70,471)( 71,470)
( 72,469)( 73,468)( 74,467)( 75,466)( 76,465)( 77,464)( 78,463)( 79,462)
( 80,461)( 81,460)( 82,459)( 83,458)( 84,457)( 85,456)( 86,455)( 87,454)
( 88,453)( 89,452)( 90,451)( 91,450)( 92,449)( 93,448)( 94,447)( 95,446)
( 96,445)( 97,444)( 98,443)( 99,442)(100,441)(101,440)(102,439)(103,438)
(104,437)(105,436)(106,435)(107,434)(108,433)(109,432)(110,431)(111,430)
(112,429)(113,428)(114,427)(115,426)(116,425)(117,424)(118,423)(119,422)
(120,421)(121,420)(122,419)(123,418)(124,417)(125,416)(126,415)(127,414)
(128,413)(129,412)(130,411)(131,410)(132,409)(133,408)(134,407)(135,406)
(136,405)(137,404)(138,403)(139,402)(140,401)(141,400)(142,399)(143,398)
(144,397)(145,396)(146,395)(147,394)(148,393)(149,392)(150,391)(151,390)
(152,389)(153,388)(154,387)(155,386)(156,385)(157,384)(158,383)(159,382)
(160,381)(161,380)(162,379)(163,378)(164,377)(165,376)(166,375)(167,374)
(168,373)(169,372)(170,371)(171,370)(172,369)(173,368)(174,367)(175,366)
(176,365)(177,364)(178,363)(179,362)(180,361)(181,360)(182,359)(183,358)
(184,357)(185,356)(186,355)(187,354)(188,353)(189,352)(190,351)(191,350)
(192,349)(193,348)(194,347)(195,346)(196,345)(197,344)(198,343)(199,342)
(200,341)(201,340)(202,339)(203,338)(204,337)(205,336)(206,335)(207,334)
(208,333)(209,332)(210,331)(211,330)(212,329)(213,328)(214,327)(215,326)
(216,325)(217,324)(218,323)(219,322)(220,321)(221,320)(222,319)(223,318)
(224,317)(225,316)(226,315)(227,314)(228,313)(229,312)(230,311)(231,310)
(232,309)(233,308)(234,307)(235,306)(236,305)(237,304)(238,303)(239,302)
(240,301)(241,300)(242,299)(243,298)(244,297)(245,296)(246,295)(247,294)
(248,293)(249,292)(250,291)(251,290)(252,289)(253,288)(254,287)(255,286)
(256,285)(257,284)(258,283)(259,282)(260,281)(261,280)(262,279)(263,278)
(264,277)(265,276)(266,275)(267,274)(268,273)(269,272);
poly := sub<Sym(538)|s0,s1>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1> := Group< s0,s1 | s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope