include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {542}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {542}*1084
Also Known As : 542-gon, {542}. if this polytope has another name.
Group : SmallGroup(1084,3)
Rank : 2
Schlafli Type : {542}
Number of vertices, edges, etc : 542, 542
Order of s0s1 : 542
Special Properties :
Universal
Spherical
Locally Spherical
Orientable
Self-Dual
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {271}*542
271-fold quotients : {2}*4
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2,271)( 3,270)( 4,269)( 5,268)( 6,267)( 7,266)( 8,265)( 9,264)
( 10,263)( 11,262)( 12,261)( 13,260)( 14,259)( 15,258)( 16,257)( 17,256)
( 18,255)( 19,254)( 20,253)( 21,252)( 22,251)( 23,250)( 24,249)( 25,248)
( 26,247)( 27,246)( 28,245)( 29,244)( 30,243)( 31,242)( 32,241)( 33,240)
( 34,239)( 35,238)( 36,237)( 37,236)( 38,235)( 39,234)( 40,233)( 41,232)
( 42,231)( 43,230)( 44,229)( 45,228)( 46,227)( 47,226)( 48,225)( 49,224)
( 50,223)( 51,222)( 52,221)( 53,220)( 54,219)( 55,218)( 56,217)( 57,216)
( 58,215)( 59,214)( 60,213)( 61,212)( 62,211)( 63,210)( 64,209)( 65,208)
( 66,207)( 67,206)( 68,205)( 69,204)( 70,203)( 71,202)( 72,201)( 73,200)
( 74,199)( 75,198)( 76,197)( 77,196)( 78,195)( 79,194)( 80,193)( 81,192)
( 82,191)( 83,190)( 84,189)( 85,188)( 86,187)( 87,186)( 88,185)( 89,184)
( 90,183)( 91,182)( 92,181)( 93,180)( 94,179)( 95,178)( 96,177)( 97,176)
( 98,175)( 99,174)(100,173)(101,172)(102,171)(103,170)(104,169)(105,168)
(106,167)(107,166)(108,165)(109,164)(110,163)(111,162)(112,161)(113,160)
(114,159)(115,158)(116,157)(117,156)(118,155)(119,154)(120,153)(121,152)
(122,151)(123,150)(124,149)(125,148)(126,147)(127,146)(128,145)(129,144)
(130,143)(131,142)(132,141)(133,140)(134,139)(135,138)(136,137)(273,542)
(274,541)(275,540)(276,539)(277,538)(278,537)(279,536)(280,535)(281,534)
(282,533)(283,532)(284,531)(285,530)(286,529)(287,528)(288,527)(289,526)
(290,525)(291,524)(292,523)(293,522)(294,521)(295,520)(296,519)(297,518)
(298,517)(299,516)(300,515)(301,514)(302,513)(303,512)(304,511)(305,510)
(306,509)(307,508)(308,507)(309,506)(310,505)(311,504)(312,503)(313,502)
(314,501)(315,500)(316,499)(317,498)(318,497)(319,496)(320,495)(321,494)
(322,493)(323,492)(324,491)(325,490)(326,489)(327,488)(328,487)(329,486)
(330,485)(331,484)(332,483)(333,482)(334,481)(335,480)(336,479)(337,478)
(338,477)(339,476)(340,475)(341,474)(342,473)(343,472)(344,471)(345,470)
(346,469)(347,468)(348,467)(349,466)(350,465)(351,464)(352,463)(353,462)
(354,461)(355,460)(356,459)(357,458)(358,457)(359,456)(360,455)(361,454)
(362,453)(363,452)(364,451)(365,450)(366,449)(367,448)(368,447)(369,446)
(370,445)(371,444)(372,443)(373,442)(374,441)(375,440)(376,439)(377,438)
(378,437)(379,436)(380,435)(381,434)(382,433)(383,432)(384,431)(385,430)
(386,429)(387,428)(388,427)(389,426)(390,425)(391,424)(392,423)(393,422)
(394,421)(395,420)(396,419)(397,418)(398,417)(399,416)(400,415)(401,414)
(402,413)(403,412)(404,411)(405,410)(406,409)(407,408);;
s1 := ( 1,273)( 2,272)( 3,542)( 4,541)( 5,540)( 6,539)( 7,538)( 8,537)
( 9,536)( 10,535)( 11,534)( 12,533)( 13,532)( 14,531)( 15,530)( 16,529)
( 17,528)( 18,527)( 19,526)( 20,525)( 21,524)( 22,523)( 23,522)( 24,521)
( 25,520)( 26,519)( 27,518)( 28,517)( 29,516)( 30,515)( 31,514)( 32,513)
( 33,512)( 34,511)( 35,510)( 36,509)( 37,508)( 38,507)( 39,506)( 40,505)
( 41,504)( 42,503)( 43,502)( 44,501)( 45,500)( 46,499)( 47,498)( 48,497)
( 49,496)( 50,495)( 51,494)( 52,493)( 53,492)( 54,491)( 55,490)( 56,489)
( 57,488)( 58,487)( 59,486)( 60,485)( 61,484)( 62,483)( 63,482)( 64,481)
( 65,480)( 66,479)( 67,478)( 68,477)( 69,476)( 70,475)( 71,474)( 72,473)
( 73,472)( 74,471)( 75,470)( 76,469)( 77,468)( 78,467)( 79,466)( 80,465)
( 81,464)( 82,463)( 83,462)( 84,461)( 85,460)( 86,459)( 87,458)( 88,457)
( 89,456)( 90,455)( 91,454)( 92,453)( 93,452)( 94,451)( 95,450)( 96,449)
( 97,448)( 98,447)( 99,446)(100,445)(101,444)(102,443)(103,442)(104,441)
(105,440)(106,439)(107,438)(108,437)(109,436)(110,435)(111,434)(112,433)
(113,432)(114,431)(115,430)(116,429)(117,428)(118,427)(119,426)(120,425)
(121,424)(122,423)(123,422)(124,421)(125,420)(126,419)(127,418)(128,417)
(129,416)(130,415)(131,414)(132,413)(133,412)(134,411)(135,410)(136,409)
(137,408)(138,407)(139,406)(140,405)(141,404)(142,403)(143,402)(144,401)
(145,400)(146,399)(147,398)(148,397)(149,396)(150,395)(151,394)(152,393)
(153,392)(154,391)(155,390)(156,389)(157,388)(158,387)(159,386)(160,385)
(161,384)(162,383)(163,382)(164,381)(165,380)(166,379)(167,378)(168,377)
(169,376)(170,375)(171,374)(172,373)(173,372)(174,371)(175,370)(176,369)
(177,368)(178,367)(179,366)(180,365)(181,364)(182,363)(183,362)(184,361)
(185,360)(186,359)(187,358)(188,357)(189,356)(190,355)(191,354)(192,353)
(193,352)(194,351)(195,350)(196,349)(197,348)(198,347)(199,346)(200,345)
(201,344)(202,343)(203,342)(204,341)(205,340)(206,339)(207,338)(208,337)
(209,336)(210,335)(211,334)(212,333)(213,332)(214,331)(215,330)(216,329)
(217,328)(218,327)(219,326)(220,325)(221,324)(222,323)(223,322)(224,321)
(225,320)(226,319)(227,318)(228,317)(229,316)(230,315)(231,314)(232,313)
(233,312)(234,311)(235,310)(236,309)(237,308)(238,307)(239,306)(240,305)
(241,304)(242,303)(243,302)(244,301)(245,300)(246,299)(247,298)(248,297)
(249,296)(250,295)(251,294)(252,293)(253,292)(254,291)(255,290)(256,289)
(257,288)(258,287)(259,286)(260,285)(261,284)(262,283)(263,282)(264,281)
(265,280)(266,279)(267,278)(268,277)(269,276)(270,275)(271,274);;
poly := Group([s0,s1]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1");;
s0 := F.1;; s1 := F.2;;
rels := [ s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(542)!( 2,271)( 3,270)( 4,269)( 5,268)( 6,267)( 7,266)( 8,265)
( 9,264)( 10,263)( 11,262)( 12,261)( 13,260)( 14,259)( 15,258)( 16,257)
( 17,256)( 18,255)( 19,254)( 20,253)( 21,252)( 22,251)( 23,250)( 24,249)
( 25,248)( 26,247)( 27,246)( 28,245)( 29,244)( 30,243)( 31,242)( 32,241)
( 33,240)( 34,239)( 35,238)( 36,237)( 37,236)( 38,235)( 39,234)( 40,233)
( 41,232)( 42,231)( 43,230)( 44,229)( 45,228)( 46,227)( 47,226)( 48,225)
( 49,224)( 50,223)( 51,222)( 52,221)( 53,220)( 54,219)( 55,218)( 56,217)
( 57,216)( 58,215)( 59,214)( 60,213)( 61,212)( 62,211)( 63,210)( 64,209)
( 65,208)( 66,207)( 67,206)( 68,205)( 69,204)( 70,203)( 71,202)( 72,201)
( 73,200)( 74,199)( 75,198)( 76,197)( 77,196)( 78,195)( 79,194)( 80,193)
( 81,192)( 82,191)( 83,190)( 84,189)( 85,188)( 86,187)( 87,186)( 88,185)
( 89,184)( 90,183)( 91,182)( 92,181)( 93,180)( 94,179)( 95,178)( 96,177)
( 97,176)( 98,175)( 99,174)(100,173)(101,172)(102,171)(103,170)(104,169)
(105,168)(106,167)(107,166)(108,165)(109,164)(110,163)(111,162)(112,161)
(113,160)(114,159)(115,158)(116,157)(117,156)(118,155)(119,154)(120,153)
(121,152)(122,151)(123,150)(124,149)(125,148)(126,147)(127,146)(128,145)
(129,144)(130,143)(131,142)(132,141)(133,140)(134,139)(135,138)(136,137)
(273,542)(274,541)(275,540)(276,539)(277,538)(278,537)(279,536)(280,535)
(281,534)(282,533)(283,532)(284,531)(285,530)(286,529)(287,528)(288,527)
(289,526)(290,525)(291,524)(292,523)(293,522)(294,521)(295,520)(296,519)
(297,518)(298,517)(299,516)(300,515)(301,514)(302,513)(303,512)(304,511)
(305,510)(306,509)(307,508)(308,507)(309,506)(310,505)(311,504)(312,503)
(313,502)(314,501)(315,500)(316,499)(317,498)(318,497)(319,496)(320,495)
(321,494)(322,493)(323,492)(324,491)(325,490)(326,489)(327,488)(328,487)
(329,486)(330,485)(331,484)(332,483)(333,482)(334,481)(335,480)(336,479)
(337,478)(338,477)(339,476)(340,475)(341,474)(342,473)(343,472)(344,471)
(345,470)(346,469)(347,468)(348,467)(349,466)(350,465)(351,464)(352,463)
(353,462)(354,461)(355,460)(356,459)(357,458)(358,457)(359,456)(360,455)
(361,454)(362,453)(363,452)(364,451)(365,450)(366,449)(367,448)(368,447)
(369,446)(370,445)(371,444)(372,443)(373,442)(374,441)(375,440)(376,439)
(377,438)(378,437)(379,436)(380,435)(381,434)(382,433)(383,432)(384,431)
(385,430)(386,429)(387,428)(388,427)(389,426)(390,425)(391,424)(392,423)
(393,422)(394,421)(395,420)(396,419)(397,418)(398,417)(399,416)(400,415)
(401,414)(402,413)(403,412)(404,411)(405,410)(406,409)(407,408);
s1 := Sym(542)!( 1,273)( 2,272)( 3,542)( 4,541)( 5,540)( 6,539)( 7,538)
( 8,537)( 9,536)( 10,535)( 11,534)( 12,533)( 13,532)( 14,531)( 15,530)
( 16,529)( 17,528)( 18,527)( 19,526)( 20,525)( 21,524)( 22,523)( 23,522)
( 24,521)( 25,520)( 26,519)( 27,518)( 28,517)( 29,516)( 30,515)( 31,514)
( 32,513)( 33,512)( 34,511)( 35,510)( 36,509)( 37,508)( 38,507)( 39,506)
( 40,505)( 41,504)( 42,503)( 43,502)( 44,501)( 45,500)( 46,499)( 47,498)
( 48,497)( 49,496)( 50,495)( 51,494)( 52,493)( 53,492)( 54,491)( 55,490)
( 56,489)( 57,488)( 58,487)( 59,486)( 60,485)( 61,484)( 62,483)( 63,482)
( 64,481)( 65,480)( 66,479)( 67,478)( 68,477)( 69,476)( 70,475)( 71,474)
( 72,473)( 73,472)( 74,471)( 75,470)( 76,469)( 77,468)( 78,467)( 79,466)
( 80,465)( 81,464)( 82,463)( 83,462)( 84,461)( 85,460)( 86,459)( 87,458)
( 88,457)( 89,456)( 90,455)( 91,454)( 92,453)( 93,452)( 94,451)( 95,450)
( 96,449)( 97,448)( 98,447)( 99,446)(100,445)(101,444)(102,443)(103,442)
(104,441)(105,440)(106,439)(107,438)(108,437)(109,436)(110,435)(111,434)
(112,433)(113,432)(114,431)(115,430)(116,429)(117,428)(118,427)(119,426)
(120,425)(121,424)(122,423)(123,422)(124,421)(125,420)(126,419)(127,418)
(128,417)(129,416)(130,415)(131,414)(132,413)(133,412)(134,411)(135,410)
(136,409)(137,408)(138,407)(139,406)(140,405)(141,404)(142,403)(143,402)
(144,401)(145,400)(146,399)(147,398)(148,397)(149,396)(150,395)(151,394)
(152,393)(153,392)(154,391)(155,390)(156,389)(157,388)(158,387)(159,386)
(160,385)(161,384)(162,383)(163,382)(164,381)(165,380)(166,379)(167,378)
(168,377)(169,376)(170,375)(171,374)(172,373)(173,372)(174,371)(175,370)
(176,369)(177,368)(178,367)(179,366)(180,365)(181,364)(182,363)(183,362)
(184,361)(185,360)(186,359)(187,358)(188,357)(189,356)(190,355)(191,354)
(192,353)(193,352)(194,351)(195,350)(196,349)(197,348)(198,347)(199,346)
(200,345)(201,344)(202,343)(203,342)(204,341)(205,340)(206,339)(207,338)
(208,337)(209,336)(210,335)(211,334)(212,333)(213,332)(214,331)(215,330)
(216,329)(217,328)(218,327)(219,326)(220,325)(221,324)(222,323)(223,322)
(224,321)(225,320)(226,319)(227,318)(228,317)(229,316)(230,315)(231,314)
(232,313)(233,312)(234,311)(235,310)(236,309)(237,308)(238,307)(239,306)
(240,305)(241,304)(242,303)(243,302)(244,301)(245,300)(246,299)(247,298)
(248,297)(249,296)(250,295)(251,294)(252,293)(253,292)(254,291)(255,290)
(256,289)(257,288)(258,287)(259,286)(260,285)(261,284)(262,283)(263,282)
(264,281)(265,280)(266,279)(267,278)(268,277)(269,276)(270,275)(271,274);
poly := sub<Sym(542)|s0,s1>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1> := Group< s0,s1 | s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope