Polytope of Type {68,8}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {68,8}*1088a
Also Known As : {68,8|2}. if this polytope has another name.
Group : SmallGroup(1088,684)
Rank : 3
Schlafli Type : {68,8}
Number of vertices, edges, etc : 68, 272, 8
Order of s0s1s2 : 136
Order of s0s1s2s1 : 2
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {68,4}*544, {34,8}*544
   4-fold quotients : {68,2}*272, {34,4}*272
   8-fold quotients : {34,2}*136
   16-fold quotients : {17,2}*68
   17-fold quotients : {4,8}*64a
   34-fold quotients : {4,4}*32, {2,8}*32
   68-fold quotients : {2,4}*16, {4,2}*16
   136-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1,137)(  2,153)(  3,152)(  4,151)(  5,150)(  6,149)(  7,148)(  8,147)
(  9,146)( 10,145)( 11,144)( 12,143)( 13,142)( 14,141)( 15,140)( 16,139)
( 17,138)( 18,154)( 19,170)( 20,169)( 21,168)( 22,167)( 23,166)( 24,165)
( 25,164)( 26,163)( 27,162)( 28,161)( 29,160)( 30,159)( 31,158)( 32,157)
( 33,156)( 34,155)( 35,171)( 36,187)( 37,186)( 38,185)( 39,184)( 40,183)
( 41,182)( 42,181)( 43,180)( 44,179)( 45,178)( 46,177)( 47,176)( 48,175)
( 49,174)( 50,173)( 51,172)( 52,188)( 53,204)( 54,203)( 55,202)( 56,201)
( 57,200)( 58,199)( 59,198)( 60,197)( 61,196)( 62,195)( 63,194)( 64,193)
( 65,192)( 66,191)( 67,190)( 68,189)( 69,205)( 70,221)( 71,220)( 72,219)
( 73,218)( 74,217)( 75,216)( 76,215)( 77,214)( 78,213)( 79,212)( 80,211)
( 81,210)( 82,209)( 83,208)( 84,207)( 85,206)( 86,222)( 87,238)( 88,237)
( 89,236)( 90,235)( 91,234)( 92,233)( 93,232)( 94,231)( 95,230)( 96,229)
( 97,228)( 98,227)( 99,226)(100,225)(101,224)(102,223)(103,239)(104,255)
(105,254)(106,253)(107,252)(108,251)(109,250)(110,249)(111,248)(112,247)
(113,246)(114,245)(115,244)(116,243)(117,242)(118,241)(119,240)(120,256)
(121,272)(122,271)(123,270)(124,269)(125,268)(126,267)(127,266)(128,265)
(129,264)(130,263)(131,262)(132,261)(133,260)(134,259)(135,258)(136,257)
(273,409)(274,425)(275,424)(276,423)(277,422)(278,421)(279,420)(280,419)
(281,418)(282,417)(283,416)(284,415)(285,414)(286,413)(287,412)(288,411)
(289,410)(290,426)(291,442)(292,441)(293,440)(294,439)(295,438)(296,437)
(297,436)(298,435)(299,434)(300,433)(301,432)(302,431)(303,430)(304,429)
(305,428)(306,427)(307,443)(308,459)(309,458)(310,457)(311,456)(312,455)
(313,454)(314,453)(315,452)(316,451)(317,450)(318,449)(319,448)(320,447)
(321,446)(322,445)(323,444)(324,460)(325,476)(326,475)(327,474)(328,473)
(329,472)(330,471)(331,470)(332,469)(333,468)(334,467)(335,466)(336,465)
(337,464)(338,463)(339,462)(340,461)(341,477)(342,493)(343,492)(344,491)
(345,490)(346,489)(347,488)(348,487)(349,486)(350,485)(351,484)(352,483)
(353,482)(354,481)(355,480)(356,479)(357,478)(358,494)(359,510)(360,509)
(361,508)(362,507)(363,506)(364,505)(365,504)(366,503)(367,502)(368,501)
(369,500)(370,499)(371,498)(372,497)(373,496)(374,495)(375,511)(376,527)
(377,526)(378,525)(379,524)(380,523)(381,522)(382,521)(383,520)(384,519)
(385,518)(386,517)(387,516)(388,515)(389,514)(390,513)(391,512)(392,528)
(393,544)(394,543)(395,542)(396,541)(397,540)(398,539)(399,538)(400,537)
(401,536)(402,535)(403,534)(404,533)(405,532)(406,531)(407,530)(408,529);;
s1 := (  1,  2)(  3, 17)(  4, 16)(  5, 15)(  6, 14)(  7, 13)(  8, 12)(  9, 11)
( 18, 19)( 20, 34)( 21, 33)( 22, 32)( 23, 31)( 24, 30)( 25, 29)( 26, 28)
( 35, 36)( 37, 51)( 38, 50)( 39, 49)( 40, 48)( 41, 47)( 42, 46)( 43, 45)
( 52, 53)( 54, 68)( 55, 67)( 56, 66)( 57, 65)( 58, 64)( 59, 63)( 60, 62)
( 69, 87)( 70, 86)( 71,102)( 72,101)( 73,100)( 74, 99)( 75, 98)( 76, 97)
( 77, 96)( 78, 95)( 79, 94)( 80, 93)( 81, 92)( 82, 91)( 83, 90)( 84, 89)
( 85, 88)(103,121)(104,120)(105,136)(106,135)(107,134)(108,133)(109,132)
(110,131)(111,130)(112,129)(113,128)(114,127)(115,126)(116,125)(117,124)
(118,123)(119,122)(137,172)(138,171)(139,187)(140,186)(141,185)(142,184)
(143,183)(144,182)(145,181)(146,180)(147,179)(148,178)(149,177)(150,176)
(151,175)(152,174)(153,173)(154,189)(155,188)(156,204)(157,203)(158,202)
(159,201)(160,200)(161,199)(162,198)(163,197)(164,196)(165,195)(166,194)
(167,193)(168,192)(169,191)(170,190)(205,257)(206,256)(207,272)(208,271)
(209,270)(210,269)(211,268)(212,267)(213,266)(214,265)(215,264)(216,263)
(217,262)(218,261)(219,260)(220,259)(221,258)(222,240)(223,239)(224,255)
(225,254)(226,253)(227,252)(228,251)(229,250)(230,249)(231,248)(232,247)
(233,246)(234,245)(235,244)(236,243)(237,242)(238,241)(273,342)(274,341)
(275,357)(276,356)(277,355)(278,354)(279,353)(280,352)(281,351)(282,350)
(283,349)(284,348)(285,347)(286,346)(287,345)(288,344)(289,343)(290,359)
(291,358)(292,374)(293,373)(294,372)(295,371)(296,370)(297,369)(298,368)
(299,367)(300,366)(301,365)(302,364)(303,363)(304,362)(305,361)(306,360)
(307,376)(308,375)(309,391)(310,390)(311,389)(312,388)(313,387)(314,386)
(315,385)(316,384)(317,383)(318,382)(319,381)(320,380)(321,379)(322,378)
(323,377)(324,393)(325,392)(326,408)(327,407)(328,406)(329,405)(330,404)
(331,403)(332,402)(333,401)(334,400)(335,399)(336,398)(337,397)(338,396)
(339,395)(340,394)(409,512)(410,511)(411,527)(412,526)(413,525)(414,524)
(415,523)(416,522)(417,521)(418,520)(419,519)(420,518)(421,517)(422,516)
(423,515)(424,514)(425,513)(426,529)(427,528)(428,544)(429,543)(430,542)
(431,541)(432,540)(433,539)(434,538)(435,537)(436,536)(437,535)(438,534)
(439,533)(440,532)(441,531)(442,530)(443,478)(444,477)(445,493)(446,492)
(447,491)(448,490)(449,489)(450,488)(451,487)(452,486)(453,485)(454,484)
(455,483)(456,482)(457,481)(458,480)(459,479)(460,495)(461,494)(462,510)
(463,509)(464,508)(465,507)(466,506)(467,505)(468,504)(469,503)(470,502)
(471,501)(472,500)(473,499)(474,498)(475,497)(476,496);;
s2 := (  1,273)(  2,274)(  3,275)(  4,276)(  5,277)(  6,278)(  7,279)(  8,280)
(  9,281)( 10,282)( 11,283)( 12,284)( 13,285)( 14,286)( 15,287)( 16,288)
( 17,289)( 18,290)( 19,291)( 20,292)( 21,293)( 22,294)( 23,295)( 24,296)
( 25,297)( 26,298)( 27,299)( 28,300)( 29,301)( 30,302)( 31,303)( 32,304)
( 33,305)( 34,306)( 35,307)( 36,308)( 37,309)( 38,310)( 39,311)( 40,312)
( 41,313)( 42,314)( 43,315)( 44,316)( 45,317)( 46,318)( 47,319)( 48,320)
( 49,321)( 50,322)( 51,323)( 52,324)( 53,325)( 54,326)( 55,327)( 56,328)
( 57,329)( 58,330)( 59,331)( 60,332)( 61,333)( 62,334)( 63,335)( 64,336)
( 65,337)( 66,338)( 67,339)( 68,340)( 69,358)( 70,359)( 71,360)( 72,361)
( 73,362)( 74,363)( 75,364)( 76,365)( 77,366)( 78,367)( 79,368)( 80,369)
( 81,370)( 82,371)( 83,372)( 84,373)( 85,374)( 86,341)( 87,342)( 88,343)
( 89,344)( 90,345)( 91,346)( 92,347)( 93,348)( 94,349)( 95,350)( 96,351)
( 97,352)( 98,353)( 99,354)(100,355)(101,356)(102,357)(103,392)(104,393)
(105,394)(106,395)(107,396)(108,397)(109,398)(110,399)(111,400)(112,401)
(113,402)(114,403)(115,404)(116,405)(117,406)(118,407)(119,408)(120,375)
(121,376)(122,377)(123,378)(124,379)(125,380)(126,381)(127,382)(128,383)
(129,384)(130,385)(131,386)(132,387)(133,388)(134,389)(135,390)(136,391)
(137,409)(138,410)(139,411)(140,412)(141,413)(142,414)(143,415)(144,416)
(145,417)(146,418)(147,419)(148,420)(149,421)(150,422)(151,423)(152,424)
(153,425)(154,426)(155,427)(156,428)(157,429)(158,430)(159,431)(160,432)
(161,433)(162,434)(163,435)(164,436)(165,437)(166,438)(167,439)(168,440)
(169,441)(170,442)(171,443)(172,444)(173,445)(174,446)(175,447)(176,448)
(177,449)(178,450)(179,451)(180,452)(181,453)(182,454)(183,455)(184,456)
(185,457)(186,458)(187,459)(188,460)(189,461)(190,462)(191,463)(192,464)
(193,465)(194,466)(195,467)(196,468)(197,469)(198,470)(199,471)(200,472)
(201,473)(202,474)(203,475)(204,476)(205,494)(206,495)(207,496)(208,497)
(209,498)(210,499)(211,500)(212,501)(213,502)(214,503)(215,504)(216,505)
(217,506)(218,507)(219,508)(220,509)(221,510)(222,477)(223,478)(224,479)
(225,480)(226,481)(227,482)(228,483)(229,484)(230,485)(231,486)(232,487)
(233,488)(234,489)(235,490)(236,491)(237,492)(238,493)(239,528)(240,529)
(241,530)(242,531)(243,532)(244,533)(245,534)(246,535)(247,536)(248,537)
(249,538)(250,539)(251,540)(252,541)(253,542)(254,543)(255,544)(256,511)
(257,512)(258,513)(259,514)(260,515)(261,516)(262,517)(263,518)(264,519)
(265,520)(266,521)(267,522)(268,523)(269,524)(270,525)(271,526)(272,527);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(544)!(  1,137)(  2,153)(  3,152)(  4,151)(  5,150)(  6,149)(  7,148)
(  8,147)(  9,146)( 10,145)( 11,144)( 12,143)( 13,142)( 14,141)( 15,140)
( 16,139)( 17,138)( 18,154)( 19,170)( 20,169)( 21,168)( 22,167)( 23,166)
( 24,165)( 25,164)( 26,163)( 27,162)( 28,161)( 29,160)( 30,159)( 31,158)
( 32,157)( 33,156)( 34,155)( 35,171)( 36,187)( 37,186)( 38,185)( 39,184)
( 40,183)( 41,182)( 42,181)( 43,180)( 44,179)( 45,178)( 46,177)( 47,176)
( 48,175)( 49,174)( 50,173)( 51,172)( 52,188)( 53,204)( 54,203)( 55,202)
( 56,201)( 57,200)( 58,199)( 59,198)( 60,197)( 61,196)( 62,195)( 63,194)
( 64,193)( 65,192)( 66,191)( 67,190)( 68,189)( 69,205)( 70,221)( 71,220)
( 72,219)( 73,218)( 74,217)( 75,216)( 76,215)( 77,214)( 78,213)( 79,212)
( 80,211)( 81,210)( 82,209)( 83,208)( 84,207)( 85,206)( 86,222)( 87,238)
( 88,237)( 89,236)( 90,235)( 91,234)( 92,233)( 93,232)( 94,231)( 95,230)
( 96,229)( 97,228)( 98,227)( 99,226)(100,225)(101,224)(102,223)(103,239)
(104,255)(105,254)(106,253)(107,252)(108,251)(109,250)(110,249)(111,248)
(112,247)(113,246)(114,245)(115,244)(116,243)(117,242)(118,241)(119,240)
(120,256)(121,272)(122,271)(123,270)(124,269)(125,268)(126,267)(127,266)
(128,265)(129,264)(130,263)(131,262)(132,261)(133,260)(134,259)(135,258)
(136,257)(273,409)(274,425)(275,424)(276,423)(277,422)(278,421)(279,420)
(280,419)(281,418)(282,417)(283,416)(284,415)(285,414)(286,413)(287,412)
(288,411)(289,410)(290,426)(291,442)(292,441)(293,440)(294,439)(295,438)
(296,437)(297,436)(298,435)(299,434)(300,433)(301,432)(302,431)(303,430)
(304,429)(305,428)(306,427)(307,443)(308,459)(309,458)(310,457)(311,456)
(312,455)(313,454)(314,453)(315,452)(316,451)(317,450)(318,449)(319,448)
(320,447)(321,446)(322,445)(323,444)(324,460)(325,476)(326,475)(327,474)
(328,473)(329,472)(330,471)(331,470)(332,469)(333,468)(334,467)(335,466)
(336,465)(337,464)(338,463)(339,462)(340,461)(341,477)(342,493)(343,492)
(344,491)(345,490)(346,489)(347,488)(348,487)(349,486)(350,485)(351,484)
(352,483)(353,482)(354,481)(355,480)(356,479)(357,478)(358,494)(359,510)
(360,509)(361,508)(362,507)(363,506)(364,505)(365,504)(366,503)(367,502)
(368,501)(369,500)(370,499)(371,498)(372,497)(373,496)(374,495)(375,511)
(376,527)(377,526)(378,525)(379,524)(380,523)(381,522)(382,521)(383,520)
(384,519)(385,518)(386,517)(387,516)(388,515)(389,514)(390,513)(391,512)
(392,528)(393,544)(394,543)(395,542)(396,541)(397,540)(398,539)(399,538)
(400,537)(401,536)(402,535)(403,534)(404,533)(405,532)(406,531)(407,530)
(408,529);
s1 := Sym(544)!(  1,  2)(  3, 17)(  4, 16)(  5, 15)(  6, 14)(  7, 13)(  8, 12)
(  9, 11)( 18, 19)( 20, 34)( 21, 33)( 22, 32)( 23, 31)( 24, 30)( 25, 29)
( 26, 28)( 35, 36)( 37, 51)( 38, 50)( 39, 49)( 40, 48)( 41, 47)( 42, 46)
( 43, 45)( 52, 53)( 54, 68)( 55, 67)( 56, 66)( 57, 65)( 58, 64)( 59, 63)
( 60, 62)( 69, 87)( 70, 86)( 71,102)( 72,101)( 73,100)( 74, 99)( 75, 98)
( 76, 97)( 77, 96)( 78, 95)( 79, 94)( 80, 93)( 81, 92)( 82, 91)( 83, 90)
( 84, 89)( 85, 88)(103,121)(104,120)(105,136)(106,135)(107,134)(108,133)
(109,132)(110,131)(111,130)(112,129)(113,128)(114,127)(115,126)(116,125)
(117,124)(118,123)(119,122)(137,172)(138,171)(139,187)(140,186)(141,185)
(142,184)(143,183)(144,182)(145,181)(146,180)(147,179)(148,178)(149,177)
(150,176)(151,175)(152,174)(153,173)(154,189)(155,188)(156,204)(157,203)
(158,202)(159,201)(160,200)(161,199)(162,198)(163,197)(164,196)(165,195)
(166,194)(167,193)(168,192)(169,191)(170,190)(205,257)(206,256)(207,272)
(208,271)(209,270)(210,269)(211,268)(212,267)(213,266)(214,265)(215,264)
(216,263)(217,262)(218,261)(219,260)(220,259)(221,258)(222,240)(223,239)
(224,255)(225,254)(226,253)(227,252)(228,251)(229,250)(230,249)(231,248)
(232,247)(233,246)(234,245)(235,244)(236,243)(237,242)(238,241)(273,342)
(274,341)(275,357)(276,356)(277,355)(278,354)(279,353)(280,352)(281,351)
(282,350)(283,349)(284,348)(285,347)(286,346)(287,345)(288,344)(289,343)
(290,359)(291,358)(292,374)(293,373)(294,372)(295,371)(296,370)(297,369)
(298,368)(299,367)(300,366)(301,365)(302,364)(303,363)(304,362)(305,361)
(306,360)(307,376)(308,375)(309,391)(310,390)(311,389)(312,388)(313,387)
(314,386)(315,385)(316,384)(317,383)(318,382)(319,381)(320,380)(321,379)
(322,378)(323,377)(324,393)(325,392)(326,408)(327,407)(328,406)(329,405)
(330,404)(331,403)(332,402)(333,401)(334,400)(335,399)(336,398)(337,397)
(338,396)(339,395)(340,394)(409,512)(410,511)(411,527)(412,526)(413,525)
(414,524)(415,523)(416,522)(417,521)(418,520)(419,519)(420,518)(421,517)
(422,516)(423,515)(424,514)(425,513)(426,529)(427,528)(428,544)(429,543)
(430,542)(431,541)(432,540)(433,539)(434,538)(435,537)(436,536)(437,535)
(438,534)(439,533)(440,532)(441,531)(442,530)(443,478)(444,477)(445,493)
(446,492)(447,491)(448,490)(449,489)(450,488)(451,487)(452,486)(453,485)
(454,484)(455,483)(456,482)(457,481)(458,480)(459,479)(460,495)(461,494)
(462,510)(463,509)(464,508)(465,507)(466,506)(467,505)(468,504)(469,503)
(470,502)(471,501)(472,500)(473,499)(474,498)(475,497)(476,496);
s2 := Sym(544)!(  1,273)(  2,274)(  3,275)(  4,276)(  5,277)(  6,278)(  7,279)
(  8,280)(  9,281)( 10,282)( 11,283)( 12,284)( 13,285)( 14,286)( 15,287)
( 16,288)( 17,289)( 18,290)( 19,291)( 20,292)( 21,293)( 22,294)( 23,295)
( 24,296)( 25,297)( 26,298)( 27,299)( 28,300)( 29,301)( 30,302)( 31,303)
( 32,304)( 33,305)( 34,306)( 35,307)( 36,308)( 37,309)( 38,310)( 39,311)
( 40,312)( 41,313)( 42,314)( 43,315)( 44,316)( 45,317)( 46,318)( 47,319)
( 48,320)( 49,321)( 50,322)( 51,323)( 52,324)( 53,325)( 54,326)( 55,327)
( 56,328)( 57,329)( 58,330)( 59,331)( 60,332)( 61,333)( 62,334)( 63,335)
( 64,336)( 65,337)( 66,338)( 67,339)( 68,340)( 69,358)( 70,359)( 71,360)
( 72,361)( 73,362)( 74,363)( 75,364)( 76,365)( 77,366)( 78,367)( 79,368)
( 80,369)( 81,370)( 82,371)( 83,372)( 84,373)( 85,374)( 86,341)( 87,342)
( 88,343)( 89,344)( 90,345)( 91,346)( 92,347)( 93,348)( 94,349)( 95,350)
( 96,351)( 97,352)( 98,353)( 99,354)(100,355)(101,356)(102,357)(103,392)
(104,393)(105,394)(106,395)(107,396)(108,397)(109,398)(110,399)(111,400)
(112,401)(113,402)(114,403)(115,404)(116,405)(117,406)(118,407)(119,408)
(120,375)(121,376)(122,377)(123,378)(124,379)(125,380)(126,381)(127,382)
(128,383)(129,384)(130,385)(131,386)(132,387)(133,388)(134,389)(135,390)
(136,391)(137,409)(138,410)(139,411)(140,412)(141,413)(142,414)(143,415)
(144,416)(145,417)(146,418)(147,419)(148,420)(149,421)(150,422)(151,423)
(152,424)(153,425)(154,426)(155,427)(156,428)(157,429)(158,430)(159,431)
(160,432)(161,433)(162,434)(163,435)(164,436)(165,437)(166,438)(167,439)
(168,440)(169,441)(170,442)(171,443)(172,444)(173,445)(174,446)(175,447)
(176,448)(177,449)(178,450)(179,451)(180,452)(181,453)(182,454)(183,455)
(184,456)(185,457)(186,458)(187,459)(188,460)(189,461)(190,462)(191,463)
(192,464)(193,465)(194,466)(195,467)(196,468)(197,469)(198,470)(199,471)
(200,472)(201,473)(202,474)(203,475)(204,476)(205,494)(206,495)(207,496)
(208,497)(209,498)(210,499)(211,500)(212,501)(213,502)(214,503)(215,504)
(216,505)(217,506)(218,507)(219,508)(220,509)(221,510)(222,477)(223,478)
(224,479)(225,480)(226,481)(227,482)(228,483)(229,484)(230,485)(231,486)
(232,487)(233,488)(234,489)(235,490)(236,491)(237,492)(238,493)(239,528)
(240,529)(241,530)(242,531)(243,532)(244,533)(245,534)(246,535)(247,536)
(248,537)(249,538)(250,539)(251,540)(252,541)(253,542)(254,543)(255,544)
(256,511)(257,512)(258,513)(259,514)(260,515)(261,516)(262,517)(263,518)
(264,519)(265,520)(266,521)(267,522)(268,523)(269,524)(270,525)(271,526)
(272,527);
poly := sub<Sym(544)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope