include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {68,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {68,4}*544
Also Known As : {68,4|2}. if this polytope has another name.
Group : SmallGroup(544,104)
Rank : 3
Schlafli Type : {68,4}
Number of vertices, edges, etc : 68, 136, 4
Order of s0s1s2 : 68
Order of s0s1s2s1 : 2
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Flat
Self-Petrie
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Skewing Operation
Facet Of :
{68,4,2} of size 1088
Vertex Figure Of :
{2,68,4} of size 1088
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {68,2}*272, {34,4}*272
4-fold quotients : {34,2}*136
8-fold quotients : {17,2}*68
17-fold quotients : {4,4}*32
34-fold quotients : {2,4}*16, {4,2}*16
68-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
2-fold covers : {68,8}*1088a, {136,4}*1088a, {68,8}*1088b, {136,4}*1088b, {68,4}*1088
3-fold covers : {68,12}*1632, {204,4}*1632a
Permutation Representation (GAP) :
s0 := ( 2, 17)( 3, 16)( 4, 15)( 5, 14)( 6, 13)( 7, 12)( 8, 11)( 9, 10)
( 19, 34)( 20, 33)( 21, 32)( 22, 31)( 23, 30)( 24, 29)( 25, 28)( 26, 27)
( 36, 51)( 37, 50)( 38, 49)( 39, 48)( 40, 47)( 41, 46)( 42, 45)( 43, 44)
( 53, 68)( 54, 67)( 55, 66)( 56, 65)( 57, 64)( 58, 63)( 59, 62)( 60, 61)
( 69,103)( 70,119)( 71,118)( 72,117)( 73,116)( 74,115)( 75,114)( 76,113)
( 77,112)( 78,111)( 79,110)( 80,109)( 81,108)( 82,107)( 83,106)( 84,105)
( 85,104)( 86,120)( 87,136)( 88,135)( 89,134)( 90,133)( 91,132)( 92,131)
( 93,130)( 94,129)( 95,128)( 96,127)( 97,126)( 98,125)( 99,124)(100,123)
(101,122)(102,121);;
s1 := ( 1, 70)( 2, 69)( 3, 85)( 4, 84)( 5, 83)( 6, 82)( 7, 81)( 8, 80)
( 9, 79)( 10, 78)( 11, 77)( 12, 76)( 13, 75)( 14, 74)( 15, 73)( 16, 72)
( 17, 71)( 18, 87)( 19, 86)( 20,102)( 21,101)( 22,100)( 23, 99)( 24, 98)
( 25, 97)( 26, 96)( 27, 95)( 28, 94)( 29, 93)( 30, 92)( 31, 91)( 32, 90)
( 33, 89)( 34, 88)( 35,104)( 36,103)( 37,119)( 38,118)( 39,117)( 40,116)
( 41,115)( 42,114)( 43,113)( 44,112)( 45,111)( 46,110)( 47,109)( 48,108)
( 49,107)( 50,106)( 51,105)( 52,121)( 53,120)( 54,136)( 55,135)( 56,134)
( 57,133)( 58,132)( 59,131)( 60,130)( 61,129)( 62,128)( 63,127)( 64,126)
( 65,125)( 66,124)( 67,123)( 68,122);;
s2 := ( 69, 86)( 70, 87)( 71, 88)( 72, 89)( 73, 90)( 74, 91)( 75, 92)( 76, 93)
( 77, 94)( 78, 95)( 79, 96)( 80, 97)( 81, 98)( 82, 99)( 83,100)( 84,101)
( 85,102)(103,120)(104,121)(105,122)(106,123)(107,124)(108,125)(109,126)
(110,127)(111,128)(112,129)(113,130)(114,131)(115,132)(116,133)(117,134)
(118,135)(119,136);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(136)!( 2, 17)( 3, 16)( 4, 15)( 5, 14)( 6, 13)( 7, 12)( 8, 11)
( 9, 10)( 19, 34)( 20, 33)( 21, 32)( 22, 31)( 23, 30)( 24, 29)( 25, 28)
( 26, 27)( 36, 51)( 37, 50)( 38, 49)( 39, 48)( 40, 47)( 41, 46)( 42, 45)
( 43, 44)( 53, 68)( 54, 67)( 55, 66)( 56, 65)( 57, 64)( 58, 63)( 59, 62)
( 60, 61)( 69,103)( 70,119)( 71,118)( 72,117)( 73,116)( 74,115)( 75,114)
( 76,113)( 77,112)( 78,111)( 79,110)( 80,109)( 81,108)( 82,107)( 83,106)
( 84,105)( 85,104)( 86,120)( 87,136)( 88,135)( 89,134)( 90,133)( 91,132)
( 92,131)( 93,130)( 94,129)( 95,128)( 96,127)( 97,126)( 98,125)( 99,124)
(100,123)(101,122)(102,121);
s1 := Sym(136)!( 1, 70)( 2, 69)( 3, 85)( 4, 84)( 5, 83)( 6, 82)( 7, 81)
( 8, 80)( 9, 79)( 10, 78)( 11, 77)( 12, 76)( 13, 75)( 14, 74)( 15, 73)
( 16, 72)( 17, 71)( 18, 87)( 19, 86)( 20,102)( 21,101)( 22,100)( 23, 99)
( 24, 98)( 25, 97)( 26, 96)( 27, 95)( 28, 94)( 29, 93)( 30, 92)( 31, 91)
( 32, 90)( 33, 89)( 34, 88)( 35,104)( 36,103)( 37,119)( 38,118)( 39,117)
( 40,116)( 41,115)( 42,114)( 43,113)( 44,112)( 45,111)( 46,110)( 47,109)
( 48,108)( 49,107)( 50,106)( 51,105)( 52,121)( 53,120)( 54,136)( 55,135)
( 56,134)( 57,133)( 58,132)( 59,131)( 60,130)( 61,129)( 62,128)( 63,127)
( 64,126)( 65,125)( 66,124)( 67,123)( 68,122);
s2 := Sym(136)!( 69, 86)( 70, 87)( 71, 88)( 72, 89)( 73, 90)( 74, 91)( 75, 92)
( 76, 93)( 77, 94)( 78, 95)( 79, 96)( 80, 97)( 81, 98)( 82, 99)( 83,100)
( 84,101)( 85,102)(103,120)(104,121)(105,122)(106,123)(107,124)(108,125)
(109,126)(110,127)(111,128)(112,129)(113,130)(114,131)(115,132)(116,133)
(117,134)(118,135)(119,136);
poly := sub<Sym(136)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope