include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,136}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,136}*1088b
if this polytope has a name.
Group : SmallGroup(1088,719)
Rank : 3
Schlafli Type : {4,136}
Number of vertices, edges, etc : 4, 272, 136
Order of s0s1s2 : 136
Order of s0s1s2s1 : 4
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {4,68}*544
4-fold quotients : {2,68}*272, {4,34}*272
8-fold quotients : {2,34}*136
16-fold quotients : {2,17}*68
17-fold quotients : {4,8}*64b
34-fold quotients : {4,4}*32
68-fold quotients : {2,4}*16, {4,2}*16
136-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1,137)( 2,138)( 3,139)( 4,140)( 5,141)( 6,142)( 7,143)( 8,144)
( 9,145)( 10,146)( 11,147)( 12,148)( 13,149)( 14,150)( 15,151)( 16,152)
( 17,153)( 18,154)( 19,155)( 20,156)( 21,157)( 22,158)( 23,159)( 24,160)
( 25,161)( 26,162)( 27,163)( 28,164)( 29,165)( 30,166)( 31,167)( 32,168)
( 33,169)( 34,170)( 35,171)( 36,172)( 37,173)( 38,174)( 39,175)( 40,176)
( 41,177)( 42,178)( 43,179)( 44,180)( 45,181)( 46,182)( 47,183)( 48,184)
( 49,185)( 50,186)( 51,187)( 52,188)( 53,189)( 54,190)( 55,191)( 56,192)
( 57,193)( 58,194)( 59,195)( 60,196)( 61,197)( 62,198)( 63,199)( 64,200)
( 65,201)( 66,202)( 67,203)( 68,204)( 69,222)( 70,223)( 71,224)( 72,225)
( 73,226)( 74,227)( 75,228)( 76,229)( 77,230)( 78,231)( 79,232)( 80,233)
( 81,234)( 82,235)( 83,236)( 84,237)( 85,238)( 86,205)( 87,206)( 88,207)
( 89,208)( 90,209)( 91,210)( 92,211)( 93,212)( 94,213)( 95,214)( 96,215)
( 97,216)( 98,217)( 99,218)(100,219)(101,220)(102,221)(103,256)(104,257)
(105,258)(106,259)(107,260)(108,261)(109,262)(110,263)(111,264)(112,265)
(113,266)(114,267)(115,268)(116,269)(117,270)(118,271)(119,272)(120,239)
(121,240)(122,241)(123,242)(124,243)(125,244)(126,245)(127,246)(128,247)
(129,248)(130,249)(131,250)(132,251)(133,252)(134,253)(135,254)(136,255)
(273,409)(274,410)(275,411)(276,412)(277,413)(278,414)(279,415)(280,416)
(281,417)(282,418)(283,419)(284,420)(285,421)(286,422)(287,423)(288,424)
(289,425)(290,426)(291,427)(292,428)(293,429)(294,430)(295,431)(296,432)
(297,433)(298,434)(299,435)(300,436)(301,437)(302,438)(303,439)(304,440)
(305,441)(306,442)(307,443)(308,444)(309,445)(310,446)(311,447)(312,448)
(313,449)(314,450)(315,451)(316,452)(317,453)(318,454)(319,455)(320,456)
(321,457)(322,458)(323,459)(324,460)(325,461)(326,462)(327,463)(328,464)
(329,465)(330,466)(331,467)(332,468)(333,469)(334,470)(335,471)(336,472)
(337,473)(338,474)(339,475)(340,476)(341,494)(342,495)(343,496)(344,497)
(345,498)(346,499)(347,500)(348,501)(349,502)(350,503)(351,504)(352,505)
(353,506)(354,507)(355,508)(356,509)(357,510)(358,477)(359,478)(360,479)
(361,480)(362,481)(363,482)(364,483)(365,484)(366,485)(367,486)(368,487)
(369,488)(370,489)(371,490)(372,491)(373,492)(374,493)(375,528)(376,529)
(377,530)(378,531)(379,532)(380,533)(381,534)(382,535)(383,536)(384,537)
(385,538)(386,539)(387,540)(388,541)(389,542)(390,543)(391,544)(392,511)
(393,512)(394,513)(395,514)(396,515)(397,516)(398,517)(399,518)(400,519)
(401,520)(402,521)(403,522)(404,523)(405,524)(406,525)(407,526)(408,527);;
s1 := ( 2, 17)( 3, 16)( 4, 15)( 5, 14)( 6, 13)( 7, 12)( 8, 11)( 9, 10)
( 19, 34)( 20, 33)( 21, 32)( 22, 31)( 23, 30)( 24, 29)( 25, 28)( 26, 27)
( 36, 51)( 37, 50)( 38, 49)( 39, 48)( 40, 47)( 41, 46)( 42, 45)( 43, 44)
( 53, 68)( 54, 67)( 55, 66)( 56, 65)( 57, 64)( 58, 63)( 59, 62)( 60, 61)
( 69, 86)( 70,102)( 71,101)( 72,100)( 73, 99)( 74, 98)( 75, 97)( 76, 96)
( 77, 95)( 78, 94)( 79, 93)( 80, 92)( 81, 91)( 82, 90)( 83, 89)( 84, 88)
( 85, 87)(103,120)(104,136)(105,135)(106,134)(107,133)(108,132)(109,131)
(110,130)(111,129)(112,128)(113,127)(114,126)(115,125)(116,124)(117,123)
(118,122)(119,121)(137,171)(138,187)(139,186)(140,185)(141,184)(142,183)
(143,182)(144,181)(145,180)(146,179)(147,178)(148,177)(149,176)(150,175)
(151,174)(152,173)(153,172)(154,188)(155,204)(156,203)(157,202)(158,201)
(159,200)(160,199)(161,198)(162,197)(163,196)(164,195)(165,194)(166,193)
(167,192)(168,191)(169,190)(170,189)(205,256)(206,272)(207,271)(208,270)
(209,269)(210,268)(211,267)(212,266)(213,265)(214,264)(215,263)(216,262)
(217,261)(218,260)(219,259)(220,258)(221,257)(222,239)(223,255)(224,254)
(225,253)(226,252)(227,251)(228,250)(229,249)(230,248)(231,247)(232,246)
(233,245)(234,244)(235,243)(236,242)(237,241)(238,240)(273,341)(274,357)
(275,356)(276,355)(277,354)(278,353)(279,352)(280,351)(281,350)(282,349)
(283,348)(284,347)(285,346)(286,345)(287,344)(288,343)(289,342)(290,358)
(291,374)(292,373)(293,372)(294,371)(295,370)(296,369)(297,368)(298,367)
(299,366)(300,365)(301,364)(302,363)(303,362)(304,361)(305,360)(306,359)
(307,375)(308,391)(309,390)(310,389)(311,388)(312,387)(313,386)(314,385)
(315,384)(316,383)(317,382)(318,381)(319,380)(320,379)(321,378)(322,377)
(323,376)(324,392)(325,408)(326,407)(327,406)(328,405)(329,404)(330,403)
(331,402)(332,401)(333,400)(334,399)(335,398)(336,397)(337,396)(338,395)
(339,394)(340,393)(409,528)(410,544)(411,543)(412,542)(413,541)(414,540)
(415,539)(416,538)(417,537)(418,536)(419,535)(420,534)(421,533)(422,532)
(423,531)(424,530)(425,529)(426,511)(427,527)(428,526)(429,525)(430,524)
(431,523)(432,522)(433,521)(434,520)(435,519)(436,518)(437,517)(438,516)
(439,515)(440,514)(441,513)(442,512)(443,494)(444,510)(445,509)(446,508)
(447,507)(448,506)(449,505)(450,504)(451,503)(452,502)(453,501)(454,500)
(455,499)(456,498)(457,497)(458,496)(459,495)(460,477)(461,493)(462,492)
(463,491)(464,490)(465,489)(466,488)(467,487)(468,486)(469,485)(470,484)
(471,483)(472,482)(473,481)(474,480)(475,479)(476,478);;
s2 := ( 1,274)( 2,273)( 3,289)( 4,288)( 5,287)( 6,286)( 7,285)( 8,284)
( 9,283)( 10,282)( 11,281)( 12,280)( 13,279)( 14,278)( 15,277)( 16,276)
( 17,275)( 18,291)( 19,290)( 20,306)( 21,305)( 22,304)( 23,303)( 24,302)
( 25,301)( 26,300)( 27,299)( 28,298)( 29,297)( 30,296)( 31,295)( 32,294)
( 33,293)( 34,292)( 35,325)( 36,324)( 37,340)( 38,339)( 39,338)( 40,337)
( 41,336)( 42,335)( 43,334)( 44,333)( 45,332)( 46,331)( 47,330)( 48,329)
( 49,328)( 50,327)( 51,326)( 52,308)( 53,307)( 54,323)( 55,322)( 56,321)
( 57,320)( 58,319)( 59,318)( 60,317)( 61,316)( 62,315)( 63,314)( 64,313)
( 65,312)( 66,311)( 67,310)( 68,309)( 69,359)( 70,358)( 71,374)( 72,373)
( 73,372)( 74,371)( 75,370)( 76,369)( 77,368)( 78,367)( 79,366)( 80,365)
( 81,364)( 82,363)( 83,362)( 84,361)( 85,360)( 86,342)( 87,341)( 88,357)
( 89,356)( 90,355)( 91,354)( 92,353)( 93,352)( 94,351)( 95,350)( 96,349)
( 97,348)( 98,347)( 99,346)(100,345)(101,344)(102,343)(103,376)(104,375)
(105,391)(106,390)(107,389)(108,388)(109,387)(110,386)(111,385)(112,384)
(113,383)(114,382)(115,381)(116,380)(117,379)(118,378)(119,377)(120,393)
(121,392)(122,408)(123,407)(124,406)(125,405)(126,404)(127,403)(128,402)
(129,401)(130,400)(131,399)(132,398)(133,397)(134,396)(135,395)(136,394)
(137,410)(138,409)(139,425)(140,424)(141,423)(142,422)(143,421)(144,420)
(145,419)(146,418)(147,417)(148,416)(149,415)(150,414)(151,413)(152,412)
(153,411)(154,427)(155,426)(156,442)(157,441)(158,440)(159,439)(160,438)
(161,437)(162,436)(163,435)(164,434)(165,433)(166,432)(167,431)(168,430)
(169,429)(170,428)(171,461)(172,460)(173,476)(174,475)(175,474)(176,473)
(177,472)(178,471)(179,470)(180,469)(181,468)(182,467)(183,466)(184,465)
(185,464)(186,463)(187,462)(188,444)(189,443)(190,459)(191,458)(192,457)
(193,456)(194,455)(195,454)(196,453)(197,452)(198,451)(199,450)(200,449)
(201,448)(202,447)(203,446)(204,445)(205,495)(206,494)(207,510)(208,509)
(209,508)(210,507)(211,506)(212,505)(213,504)(214,503)(215,502)(216,501)
(217,500)(218,499)(219,498)(220,497)(221,496)(222,478)(223,477)(224,493)
(225,492)(226,491)(227,490)(228,489)(229,488)(230,487)(231,486)(232,485)
(233,484)(234,483)(235,482)(236,481)(237,480)(238,479)(239,512)(240,511)
(241,527)(242,526)(243,525)(244,524)(245,523)(246,522)(247,521)(248,520)
(249,519)(250,518)(251,517)(252,516)(253,515)(254,514)(255,513)(256,529)
(257,528)(258,544)(259,543)(260,542)(261,541)(262,540)(263,539)(264,538)
(265,537)(266,536)(267,535)(268,534)(269,533)(270,532)(271,531)(272,530);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s1*s0*s1*s0*s2*s1*s2*s1*s0*s1,
s0*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(544)!( 1,137)( 2,138)( 3,139)( 4,140)( 5,141)( 6,142)( 7,143)
( 8,144)( 9,145)( 10,146)( 11,147)( 12,148)( 13,149)( 14,150)( 15,151)
( 16,152)( 17,153)( 18,154)( 19,155)( 20,156)( 21,157)( 22,158)( 23,159)
( 24,160)( 25,161)( 26,162)( 27,163)( 28,164)( 29,165)( 30,166)( 31,167)
( 32,168)( 33,169)( 34,170)( 35,171)( 36,172)( 37,173)( 38,174)( 39,175)
( 40,176)( 41,177)( 42,178)( 43,179)( 44,180)( 45,181)( 46,182)( 47,183)
( 48,184)( 49,185)( 50,186)( 51,187)( 52,188)( 53,189)( 54,190)( 55,191)
( 56,192)( 57,193)( 58,194)( 59,195)( 60,196)( 61,197)( 62,198)( 63,199)
( 64,200)( 65,201)( 66,202)( 67,203)( 68,204)( 69,222)( 70,223)( 71,224)
( 72,225)( 73,226)( 74,227)( 75,228)( 76,229)( 77,230)( 78,231)( 79,232)
( 80,233)( 81,234)( 82,235)( 83,236)( 84,237)( 85,238)( 86,205)( 87,206)
( 88,207)( 89,208)( 90,209)( 91,210)( 92,211)( 93,212)( 94,213)( 95,214)
( 96,215)( 97,216)( 98,217)( 99,218)(100,219)(101,220)(102,221)(103,256)
(104,257)(105,258)(106,259)(107,260)(108,261)(109,262)(110,263)(111,264)
(112,265)(113,266)(114,267)(115,268)(116,269)(117,270)(118,271)(119,272)
(120,239)(121,240)(122,241)(123,242)(124,243)(125,244)(126,245)(127,246)
(128,247)(129,248)(130,249)(131,250)(132,251)(133,252)(134,253)(135,254)
(136,255)(273,409)(274,410)(275,411)(276,412)(277,413)(278,414)(279,415)
(280,416)(281,417)(282,418)(283,419)(284,420)(285,421)(286,422)(287,423)
(288,424)(289,425)(290,426)(291,427)(292,428)(293,429)(294,430)(295,431)
(296,432)(297,433)(298,434)(299,435)(300,436)(301,437)(302,438)(303,439)
(304,440)(305,441)(306,442)(307,443)(308,444)(309,445)(310,446)(311,447)
(312,448)(313,449)(314,450)(315,451)(316,452)(317,453)(318,454)(319,455)
(320,456)(321,457)(322,458)(323,459)(324,460)(325,461)(326,462)(327,463)
(328,464)(329,465)(330,466)(331,467)(332,468)(333,469)(334,470)(335,471)
(336,472)(337,473)(338,474)(339,475)(340,476)(341,494)(342,495)(343,496)
(344,497)(345,498)(346,499)(347,500)(348,501)(349,502)(350,503)(351,504)
(352,505)(353,506)(354,507)(355,508)(356,509)(357,510)(358,477)(359,478)
(360,479)(361,480)(362,481)(363,482)(364,483)(365,484)(366,485)(367,486)
(368,487)(369,488)(370,489)(371,490)(372,491)(373,492)(374,493)(375,528)
(376,529)(377,530)(378,531)(379,532)(380,533)(381,534)(382,535)(383,536)
(384,537)(385,538)(386,539)(387,540)(388,541)(389,542)(390,543)(391,544)
(392,511)(393,512)(394,513)(395,514)(396,515)(397,516)(398,517)(399,518)
(400,519)(401,520)(402,521)(403,522)(404,523)(405,524)(406,525)(407,526)
(408,527);
s1 := Sym(544)!( 2, 17)( 3, 16)( 4, 15)( 5, 14)( 6, 13)( 7, 12)( 8, 11)
( 9, 10)( 19, 34)( 20, 33)( 21, 32)( 22, 31)( 23, 30)( 24, 29)( 25, 28)
( 26, 27)( 36, 51)( 37, 50)( 38, 49)( 39, 48)( 40, 47)( 41, 46)( 42, 45)
( 43, 44)( 53, 68)( 54, 67)( 55, 66)( 56, 65)( 57, 64)( 58, 63)( 59, 62)
( 60, 61)( 69, 86)( 70,102)( 71,101)( 72,100)( 73, 99)( 74, 98)( 75, 97)
( 76, 96)( 77, 95)( 78, 94)( 79, 93)( 80, 92)( 81, 91)( 82, 90)( 83, 89)
( 84, 88)( 85, 87)(103,120)(104,136)(105,135)(106,134)(107,133)(108,132)
(109,131)(110,130)(111,129)(112,128)(113,127)(114,126)(115,125)(116,124)
(117,123)(118,122)(119,121)(137,171)(138,187)(139,186)(140,185)(141,184)
(142,183)(143,182)(144,181)(145,180)(146,179)(147,178)(148,177)(149,176)
(150,175)(151,174)(152,173)(153,172)(154,188)(155,204)(156,203)(157,202)
(158,201)(159,200)(160,199)(161,198)(162,197)(163,196)(164,195)(165,194)
(166,193)(167,192)(168,191)(169,190)(170,189)(205,256)(206,272)(207,271)
(208,270)(209,269)(210,268)(211,267)(212,266)(213,265)(214,264)(215,263)
(216,262)(217,261)(218,260)(219,259)(220,258)(221,257)(222,239)(223,255)
(224,254)(225,253)(226,252)(227,251)(228,250)(229,249)(230,248)(231,247)
(232,246)(233,245)(234,244)(235,243)(236,242)(237,241)(238,240)(273,341)
(274,357)(275,356)(276,355)(277,354)(278,353)(279,352)(280,351)(281,350)
(282,349)(283,348)(284,347)(285,346)(286,345)(287,344)(288,343)(289,342)
(290,358)(291,374)(292,373)(293,372)(294,371)(295,370)(296,369)(297,368)
(298,367)(299,366)(300,365)(301,364)(302,363)(303,362)(304,361)(305,360)
(306,359)(307,375)(308,391)(309,390)(310,389)(311,388)(312,387)(313,386)
(314,385)(315,384)(316,383)(317,382)(318,381)(319,380)(320,379)(321,378)
(322,377)(323,376)(324,392)(325,408)(326,407)(327,406)(328,405)(329,404)
(330,403)(331,402)(332,401)(333,400)(334,399)(335,398)(336,397)(337,396)
(338,395)(339,394)(340,393)(409,528)(410,544)(411,543)(412,542)(413,541)
(414,540)(415,539)(416,538)(417,537)(418,536)(419,535)(420,534)(421,533)
(422,532)(423,531)(424,530)(425,529)(426,511)(427,527)(428,526)(429,525)
(430,524)(431,523)(432,522)(433,521)(434,520)(435,519)(436,518)(437,517)
(438,516)(439,515)(440,514)(441,513)(442,512)(443,494)(444,510)(445,509)
(446,508)(447,507)(448,506)(449,505)(450,504)(451,503)(452,502)(453,501)
(454,500)(455,499)(456,498)(457,497)(458,496)(459,495)(460,477)(461,493)
(462,492)(463,491)(464,490)(465,489)(466,488)(467,487)(468,486)(469,485)
(470,484)(471,483)(472,482)(473,481)(474,480)(475,479)(476,478);
s2 := Sym(544)!( 1,274)( 2,273)( 3,289)( 4,288)( 5,287)( 6,286)( 7,285)
( 8,284)( 9,283)( 10,282)( 11,281)( 12,280)( 13,279)( 14,278)( 15,277)
( 16,276)( 17,275)( 18,291)( 19,290)( 20,306)( 21,305)( 22,304)( 23,303)
( 24,302)( 25,301)( 26,300)( 27,299)( 28,298)( 29,297)( 30,296)( 31,295)
( 32,294)( 33,293)( 34,292)( 35,325)( 36,324)( 37,340)( 38,339)( 39,338)
( 40,337)( 41,336)( 42,335)( 43,334)( 44,333)( 45,332)( 46,331)( 47,330)
( 48,329)( 49,328)( 50,327)( 51,326)( 52,308)( 53,307)( 54,323)( 55,322)
( 56,321)( 57,320)( 58,319)( 59,318)( 60,317)( 61,316)( 62,315)( 63,314)
( 64,313)( 65,312)( 66,311)( 67,310)( 68,309)( 69,359)( 70,358)( 71,374)
( 72,373)( 73,372)( 74,371)( 75,370)( 76,369)( 77,368)( 78,367)( 79,366)
( 80,365)( 81,364)( 82,363)( 83,362)( 84,361)( 85,360)( 86,342)( 87,341)
( 88,357)( 89,356)( 90,355)( 91,354)( 92,353)( 93,352)( 94,351)( 95,350)
( 96,349)( 97,348)( 98,347)( 99,346)(100,345)(101,344)(102,343)(103,376)
(104,375)(105,391)(106,390)(107,389)(108,388)(109,387)(110,386)(111,385)
(112,384)(113,383)(114,382)(115,381)(116,380)(117,379)(118,378)(119,377)
(120,393)(121,392)(122,408)(123,407)(124,406)(125,405)(126,404)(127,403)
(128,402)(129,401)(130,400)(131,399)(132,398)(133,397)(134,396)(135,395)
(136,394)(137,410)(138,409)(139,425)(140,424)(141,423)(142,422)(143,421)
(144,420)(145,419)(146,418)(147,417)(148,416)(149,415)(150,414)(151,413)
(152,412)(153,411)(154,427)(155,426)(156,442)(157,441)(158,440)(159,439)
(160,438)(161,437)(162,436)(163,435)(164,434)(165,433)(166,432)(167,431)
(168,430)(169,429)(170,428)(171,461)(172,460)(173,476)(174,475)(175,474)
(176,473)(177,472)(178,471)(179,470)(180,469)(181,468)(182,467)(183,466)
(184,465)(185,464)(186,463)(187,462)(188,444)(189,443)(190,459)(191,458)
(192,457)(193,456)(194,455)(195,454)(196,453)(197,452)(198,451)(199,450)
(200,449)(201,448)(202,447)(203,446)(204,445)(205,495)(206,494)(207,510)
(208,509)(209,508)(210,507)(211,506)(212,505)(213,504)(214,503)(215,502)
(216,501)(217,500)(218,499)(219,498)(220,497)(221,496)(222,478)(223,477)
(224,493)(225,492)(226,491)(227,490)(228,489)(229,488)(230,487)(231,486)
(232,485)(233,484)(234,483)(235,482)(236,481)(237,480)(238,479)(239,512)
(240,511)(241,527)(242,526)(243,525)(244,524)(245,523)(246,522)(247,521)
(248,520)(249,519)(250,518)(251,517)(252,516)(253,515)(254,514)(255,513)
(256,529)(257,528)(258,544)(259,543)(260,542)(261,541)(262,540)(263,539)
(264,538)(265,537)(266,536)(267,535)(268,534)(269,533)(270,532)(271,531)
(272,530);
poly := sub<Sym(544)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s1*s0*s1*s0*s2*s1*s2*s1*s0*s1,
s0*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1 >;
References : None.
to this polytope